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Abstract

The distributive effects of carbon taxation are critical for its political accept-

ability and depend on both income and geographic factors. Using French admin-

istrative data, household surveys, and matched employer-employee records, we

document that rural households spend 2.7 times more on fossil fuels than urban

households and are employed in firms that emit 3 times more greenhouse gases.

We incorporate these insights into a spatial heterogeneous-agent model with en-

dogenous migration and wealth accumulation, linking spatial and macroeconomic

approaches. We find that rural households experience 20% higher welfare losses,

and failing to account for geography in optimal revenue recycling lowers aggregate

welfare by 7%.
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Introduction

Carbon taxes reduce emissions but impose unequal costs for households and firms. Fossil

fuels represent a larger share of expenditures for low-income and rural households, and a

larger share in firms’ input costs in rural areas. These distributive effects can undermine

the political acceptability of carbon taxation, as illustrated in France with the Yellow

Vests protests and the subsequent carbon tax freeze. Consequently, designing socially

acceptable carbon taxes requires careful consideration of their distributional impacts

on both households and firms. While existing literature has predominantly focused on

the “rich versus poor” dimension of the energy transition burden, less attention has

been given to the specific role of geographical heterogeneity in energy consumption

and emissions patterns. This paper addresses this gap by providing detailed empirical

evidence on regional disparities and integrating these patterns into a rich quantitative

model.

Using several datasets covering the French economy, we systematically document the

distribution of direct emissions across both households and firms. We link household-

level surveys to fiscal declarations to estimate fossil fuel consumption for heating and

transportation at a highly granular level. Worker-level emission patterns are derived

from matched employer-employee administrative data combined with firm-level emis-

sions. Our findings reveal that rural households bear a dual burden under carbon

taxation. They have greater energy needs for both transportation and heating, un-

like urban households, which benefit from accessible public transit and smaller, more

energy-efficient homes. Furthermore, carbon-intensive industries, such as agriculture

and metallurgy, tend to cluster in rural areas, while urban workers are more frequently

employed in less carbon-intensive service sectors.

We then integrate these emission patterns into a new spatial heterogeneous-agent

model that captures heterogeneity in both income and geography, allowing us to explore

their implications for the distributive effects of carbon taxation. To our knowledge,

this is the first model to simultaneously incorporate endogenous savings and migra-

tion choices within a fully-fledged heterogeneous-agent general equilibrium framework.

Consistent with microdata, each region in the model is characterized by specific en-

ergy expenditure shares for both households and firms, and housing and labor markets

are segmented in each area. Households endogenously choose whether to migrate in

response to regional differences in carbon taxation, capturing mobility frictions and

relocation incentives. Our model successfully replicates observed heterogeneity in in-

come, wealth, and energy consumption across regions, as well as the cross-correlation

between income, geography, and migration patterns. We then introduce carbon taxes

on both households and firms and evaluate a range of revenue-recycling scenarios, from
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increased public spending to targeted transfers based on location and income. Un-

der a welfare-maximizing planner with an emissions constraint, we investigate optimal

revenue-recycling policies and the resulting political economy implications. Our paper

yields three key findings.

First, using micro data on households and firms, we show that geography is more

important than income to assess emission patterns. Our analysis of household-

level survey data reveals that rural households consume 2.7 times more fossil fuels,

primarily due to larger homes and higher reliance on car travel. Notably, supplementary

evidence suggests that this rural-urban disparity in energy consumption extends beyond

France, with similar patterns observed in the US, the UK, Germany, Spain, Italy, or the

Netherlands. Moreover, our matched employer-employee dataset indicates that rural

workers are twice as likely as their urban counterparts to be employed in emission-

intensive sectors, such as agriculture and manufacturing. By attributing firm-level

emissions to employees based on firm size and sectoral emission intensity, we find that

rural households are employed in firms emitting three times more greenhouse gases than

those employing Parisian households. These findings are embedded into our spatial

heterogeneous-agent model to examine the distributional effects of carbon taxation

across both income and geographic dimensions.

Second, our quantitative model shows that carbon taxes disproportionately

burden rural households, with effects varying by income, tax type, and time horizon.

In our benchmark scenario, targeting a 10% reduction in emissions, median welfare

losses in rural areas are 20% higher than those in Paris (−17.3% vs. −14.5%). We

decompose these effects across our two tax types: on households’ direct emissions and

on firms’ direct emissions. The tax on household is highly regressive, as energy is a

necessity good, disproportionately burdening low-income households. The firm tax is

less regressive, as it primarily reduces wages – affecting middle-income households – and

lowers interest rates, which impacts wealthier households. Moreover, these taxes trigger

distinct migration patterns: while the household tax drives low-income households

out of rural areas to escape steep energy costs, the firm tax attracts them through

falling housing prices. Overall, our findings underscore that the welfare costs of carbon

taxation evolve over time, with migration playing a crucial role in mitigating its impact

across regions.

Third, we find that ignoring geographical location in recycling rules reduces

aggregate welfare by 7%. In a scenario targeting a 10% reduction in emissions, our

optimal recycling policy – targeting both income and location – outperforms income-

only targeting by 7.3% and uniform transfers by 38%. This approach not only boosts

median welfare across all income and geographic groups but also cuts the share of
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households experiencing welfare losses by 10% compared to income-based transfers.

A key mechanism is that location-based targeting dampens migration flows, thereby

mitigating welfare costs. Importantly, these findings remain robust across alternative

welfare objectives, Pareto weights, and parametric formulas.

Our main contribution is to develop a unified framework for analyzing the distribu-

tive effects of carbon taxation by jointly examining its impact on both households and

firms, incorporating both income and spatial heterogeneity. This framework bridges

two key strands of the literature: the distributive effects of carbon taxation, and the

modeling of income and geographical heterogeneity among households.

The literature on the distributive effects of carbon taxation examines the heteroge-

neous fiscal incidence of carbon taxes across households, using micro-simulation, Com-

putable General Equilibrium (CGE), or heterogeneous-agent general equilibrium mod-

els. The general approach is to link the household distribution, typically along the

income dimension, to energy prices, which are impacted by carbon taxes. This requires

accounting for both the direct effect (households consume energy for housing and trans-

portation) and the indirect effect (firms use energy as an input, which affects the prices

of other inputs, such as capital and labor, thus influencing income distribution). Based

on micro-simulations, Cronin, Fullerton and Sexton (2019) for the U.S. and Douenne

(2020) in the French context, conclude that carbon taxes are regressive, with most of

the heterogeneity occurring within income quantiles. We confirm that carbon taxes

are regressive and explicitly model this within-quantile heterogeneity by introducing

geographical differences, which are a key determinant of tax burden disparities across

households. Within the CGE literature, Rausch, Metcalf and Reilly (2011) and Goulder

et al. (2019) conclude that the progressivity of source-side effects (related to changes in

relative factor prices) offsets the regressive use-side effects (related to the composition

of total expenditures). Compared to these studies, we endogenize income and wealth

distributions by incorporating idiosyncratic income risk, and introduce geographical

heterogeneity. Our framework is similar to Känzig (2023), who integrates energy into

both household final consumption and firm inputs, capturing distributive effects on

both household income and expenditures; we add an additional layer of heterogeneity

by considering the spatial dimension. Finally, a central component of the analysis of the

distributive effects of carbon taxation is the use of carbon tax revenue. As in Goulder

et al. (2019) and Mathur and Morris (2014), we demonstrate that transfers improve

welfare and can make the policy progressive when targeted at low-income households.

However, we find that income-based transfers do not fully compensate individuals in ru-

ral areas, motivating the exploration of geography-based transfers. Unlike Fried, Novan
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and Peterman (2024) and Barrage (2020), who consider reducing existing distortionary

taxes, we focus on transfers, as they explicitly separate carbon tax revenue from the

general state budget, thus enhancing the political acceptability of the policy.

This paper also contributes to the macroeconomic literature on heterogeneity by

introducing a spatial dimension into heterogeneous-agent models. We start with the

Aiyagari (1994) model, with idiosyncratic productivity shocks that generate an endoge-

nous income and wealth distributions. We extend this framework by introducing non-

homothetic preferences, as in Comin, Lashkari and Mestieri (2021), to model household

energy demand, and by incorporating multiple production sectors, following Barrage

(2020), to capture firms’ energy demand. We also allow for substitution between clean

and dirty energy using CES energy baskets. Since geography is a key dimension of

heterogeneity (see Redding and Rossi-Hansberg (2017)), our contribution is to add a

geographic layer to this framework while preserving the rich general equilibrium struc-

ture of heterogeneous-agent models. Specifically, we incorporate endogenous migration,

city-specific income levels, energy requirements, and segmented housing and labor mar-

kets. Following Fajgelbaum et al. (2019), who examine location choices in response to

state taxes in the U.S., and Desmet and Rossi-Hansberg (2014), who study sectoral

recomposition across regions, we highlight the key role of worker reallocation in shap-

ing the distributive effects of carbon taxation. Households are modeled with discrete

location choices, subject to a monetary migration cost, if their expected lifetime util-

ity is higher in another region. Following Couture et al. (2024), Kleinman, Liu and

Redding (2023) and Franklin et al. (2024), households draw preference shocks from

an extreme-value distribution, preventing concentration of rich or poor households in

a single region. We extend this static framework by introducing endogenous wealth

accumulation, enabling households to save and finance migration. Given that we study

a permanent increase in carbon taxes leading to a new steady state, we account for

endogenous population dynamics, as emphasized by Hurst et al. (2016). Our calibrated

model replicates the observed joint distribution of household income and geography,

influenced by city-specific wages and housing prices, as in Allen and Arkolakis (2014)

and Davis and Dingel (2019). However, we depart from their assumption of symmet-

ric fundamentals by allowing for region-specific energy requirements. In doing so, our

model bridges the gap between heterogeneous-agent macroeconomic models and spatial

frameworks with endogenous migration. Closest to us, Bilal and Rossi-Hansberg (2021)

proposes a dynamic location model with both endogenous mobility choices and wealth

accumulation. They focus on the individual choice between savings and mobility de-

cisions following income shocks in a partial equilibrium framework. We expand their

set-up in a general equilibrium model.
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The remainder of the paper is organized as follows. Section 1 presents descriptive

evidence on the distribution of households’ and firms’ direct emissions. Section 2 in-

troduces our quantitative model. Section 3 discusses the calibration of the model using

French data. Section 4 presents our main results, while Section 5 explores optimal

carbon taxes and revenue-recycling policies. Finally, Section 6 concludes.

1 Descriptive Evidence

This section presents descriptive evidence on the distribution of direct emissions by

households and firms in France. Our analysis reveals that geographic factors outweigh

income differences. First, rural households consume more energy and fossil fuels than

urban households. Second, firms in rural areas tend to concentrate in more emission-

intensive sectors. Although the focus is on France, we observe similar patterns in other

countries.

1.1 Households’ direct emissions

The direct cost of carbon taxes is borne by households with high consumption of carbon-

intensive energy, such as fossil fuels. Since energy is typically a necessary good, most

of the existing literature has focused on income disparities. However, using survey data

from France, we find that the share of fossil fuels in total expenditures is relatively

uniform across the income distribution but declines significantly with the size of the

city in which households reside.

Data. We use French microdata from the 2017 Budget de Famille (BdF) Insee

survey,1 covering over 16,000 households. From this consumer expenditure survey, we

construct household-level fossil fuel expenditures by adding up fuels for heating and

those used in vehicles. Fossil-fuel consumption from transportation and heating make

up for more then 97% of households’ direct emissions, other activities being unidentified

in consumption surveys. We then consider total energy consumption as the sum of fossil

fuel expenditures and total electricity expenditures.2 Throughout the paper, we classify

locations into five city types: Rural, Small cities, Medium cities, Large cities, and Paris,

based on population size.3 These categories represent 23.5%, 26.0%, 18.5%, 13.4%,

1This survey is used to build consumption baskets for the French CPI and the Harmonised Index

of Consumer Prices (HICP) used by the ECB.
2In the BdF survey, as in the US Consumer Expenditure Survey, it is not possible to distinguish

between electricity expenditures for housing purposes and those for charging car batteries.
3Rural: below 2,000 inhabitants, Small cities: between 2,000 and 20,000, Medium cities: 20,000

and 50,000, Large cities: over 50,000, Paris: Parisian agglomeration. In Appendix A, we provide a
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and 18.6% of the population, respectively. For a fair comparison, we also categorize

households into five income groups, ranked by disposable income quintiles.

Empirical Results. We regress households’ energy and fossil fuel expenditures on

city type, income quintile, and control variables, as detailed in Appendix A.4. This

approach accounts for any potential correlation between income levels and location

choices. The predicted shares of electricity and fossil fuel in total expenditures, by city

type and income quintile, are shown in Figure 1. While total energy is a necessary

good—its share decreases from 10% for the first income quintile (Q1) to 8% for the

fifth quintile (Q5)—the fossil fuel share remains flat across the income distribution,

at approximately 5.5% of total expenditures. In contrast, geography strongly predicts

energy consumption: rural households consume 2.1 times more energy than Parisians

(12.1% versus 5.7%) and 2.7 times more fossil fuels (8.1% versus 3%). We then impute

the fossil fuel share for all households in France using the complete set of fiscal decla-

rations from households in 2021.4 We present its spatial distribution in Figure 3, by

averaging fossil fuel shares at the thinner geographical code available.

Figure 1: Energy share in total consumption

Note: share of fossil fuel and electricity in total consumption expenditures, controlling for variables

detailed in Appendix A.4.

To explain these differences in energy shares, we decompose household energy use

into housing and transportation, as shown in Table 3 in Appendix.

Housing accounts for 5.2% of total expenditures on average (56% of energy con-

sumption) but varies significantly across households: from 6.3% in rural areas to 3.6%

in Paris, and from 6% in Q1 to 4.1% in Q5. The primary determinant is the share

map of France corresponding to these categories.
4See Appendix A for details.
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of households living in a house, which is very high in rural areas (94%) and very low

in Paris (22%), while it is more stable across income quintiles (44% to 64%). Addi-

tional administrative data5 also reveals that rural households have nearly twice the

living space of Parisian households—an average of 105.6 square meters compared to 64

square meters in Paris. When examining disposable income distribution, we find that

the wealthiest households (Q5) have an average living space of 108.6 square meters,

while the poorest households (Q1) live in an average of 72.5 square meters.

Transportation accounts for 4.1% of total expenditures on average (44% of energy

consumption), but regional differences are again more pronounced: 5.8% for rural areas

versus 2.1% for Paris, compared to 4% for Q1 and 3.4% for Q5. Rural households

almost universally own a car (93%) and use it for commuting (48%), whereas Parisian

households rely more on public transportation and own fewer cars. The number of

vehicles and the necessity of commuting increase with income, resulting in relatively

flat transportation costs across income quintiles. Consequently, geography is more

important than income in explaining household energy shares, driven by higher housing

and transportation costs in rural areas.

5Supplementary data is available in Appendix A.
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Table 1: Energy share in total consumption (%) for several countries

Rural Towns Cities Q1 Q2 Q3 Q4 Q5

France (sum) 11.8 10.3 7.9 10.3 10.0 10.3 9.8 8.6

electricity & gas (housing) 5.2 4.6 3.6 5.5 4.8 4.5 4.2 3.6

transport costs incl. fuels 6.6 5.7 4.3 4.8 5.2 5.8 5.6 5.0

Germany (sum) 13.7 12.6 9.8 12.7 12.3 12.1 11.9 11.1

electricity & gas (housing) 5.7 5.3 5.0 7.7 6.5 5.7 5.1 3.9

transport costs incl. fuels 8.0 7.3 5.7 4.0 5.8 6.4 6.8 7.2

Italy (sum) 14.1 12.2 9.8 – – – – –

electricity & gas (housing) 6.7 5.8 5.0 – – – – –

transport costs incl. fuels 7.4 6.4 4.8 – – – – –

Netherlands (sum) 10.4 10.2 9.1 7.4 8.4 9.3 9.6 11.0

electricity & gas (housing) 4.5 4.2 3.8 5.0 4.5 4.1 3.9 3.4

transport costs incl. fuels 5.9 6.0 5.3 2.4 3.9 5.2 5.7 7.6

Spain (sum) 14.6 11.0 8.5 10.2 11.0 10.9 10.0 9.1

electricity & gas (housing) 5.1 4.2 3.9 5.4 4.8 4.5 4.2 3.6

transport costs incl. fuels 7.5 6.8 4.6 4.8 6.2 6.4 5.8 5.5

UK (sum) 14.3 12.8 10.2 11.2 12.6 12.2 12.5 11.7

electricity & gas (housing) 5.4 4.8 4.9 7.6 6.5 5.2 4.5 3.7

transport costs incl. fuels 8.9 8.0 6.3 3.8 6.1 7.0 8.0 8.0

US (sum) 8.3 7.1 5.7 8.8 8.9 7.7 6.9 4.8

electricity & gas (housing) 3.9 3.3 2.8 4.9 4.5 3.6 3.1 2.2

fossil fuels (transports) 4.4 3.8 2.9 3.9 4.4 4.1 3.8 2.6

Sources: Eurostat 2020 Household Budget Surveys (HBS) for European countries, 2023 Consumer

Expenditure Survey (CES) for the US.

The dominance of geography over income generalizes to many countries, as shown

in Table 1. In Germany, Spain, the Netherlands, and the United Kingdom, the energy

share of total expenditures is relatively flat across income quintiles, with Q1/Q5 ratios

of 1.1, 1.1, 0.7, and 1.0, respectively. However, the energy share in these countries

varies significantly by living area, with Rural/City ratios of 1.4, 1.1, 1.7, and 1.4,

respectively. In the United States, geography also plays a key role in determining

energy consumption (8.3% in rural areas versus 5.7% in cities with populations over

1 million). However, income differences are more pronounced, with energy shares of

8.8% for Q1 compared to 4.8% for Q5. This contrast between the United States and

Europe can be attributed to transportation costs: while transportation expenses are

higher for wealthier households in Europe, the opposite is true in the United States,

where even lower-income households allocate a substantial share of their expenditures

to transportation.

Therefore, geography plays a more significant role than income in explain-
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ing the share of energy and fossil fuels in household expenditures. Accounting

for this geographic dimension is crucial for understanding the distributive effects of car-

bon taxation, as fossil fuels account for the majority of direct emissions from households.

However, carbon taxes affect not only households but also the firms that employ them.

1.2 Firms’ direct emissions

Some sectors, such as metalworking, agriculture, and transportation, are more emissions-

intensive than others and, therefore, more affected by carbon taxes. Moreover, these

sectors are unevenly distributed across regions and occupations, meaning that both

income and geography influence the firms in which households are employed. This, in

turn, shapes the distribution of the indirect costs of carbon taxes.

Data. We use administrative matched employer-employee data from France known

as DADS.6 The DADS dataset has two advantages. First, it is highly representative,

containing more than 3 million individuals in each cross-section. Second, it is a panel

dataset that covers the entire work history of individuals, providing rich demographic,

geographic, and firm-level information.7 The large sample size enables us to conduct a

detailed analysis by city code and to finely disaggregate employer and worker groups,

which allows for controlling composition effects. Our contribution is to merge this

dataset with sectoral emissions data from CITEPA and official government reports.8

The methodology is as follows: using sectoral-level emission intensity (in equivalent

tCO2 per euro of value-added), firm size and the firm in which households are employed

in 2021,9 we impute firm-level emissions to its workers. This results in a metric of “tons

of CO2eq per worker”, which does not represent individual emissions or the “climate

responsibility” of workers. Instead, it serves as a proxy for the potential impact on

workers of a carbon tax imposed on the firms they work for.

Empirical results. We regress households’ “tons of CO2eq per worker” on city type,

income quintile, as described in Appendix A.4. The predicted tCO2eq per worker by

city type and income are displayed in Figure 2. We also present its spatial distribution

in Figure 3. Additionally, we present an extensive margin indicator showing the share

of workers in emissions-intensive sectors.10 Figure 2 reveals that rural households work

in firms that are 3 times more polluting than Parisian households (24 tCO2 versus 8).

Moreover, considering that rural areas account for 24% of the population, compared to

6DADS: Déclarations Annuelles de Données Sociales.
7We use the panel dimension of the dataset to analyze mobility rates across regions.
8See Appendix A.3 for further details.
9This is the most recent DADS cross-section available.

10Emissions-intensive sectors are defined as those with a share of total emissions larger than their

share of total value-added.
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19% for Paris, we find that firms in rural areas contribute to 36% of total firm emissions,

versus 9% for Paris. Along the income dimension, wealthier households tend to work

in more emissions-intensive firms, but the gradient is less pronounced compared to the

spatial dimension.

Figure 2: Emissions imputed to workers and share of workers in emission-intensive firms

Note: tons of C02 imputed per worker, controlling for variables detailed in Appendix A.4.

We provide a sectoral decomposition along the income and geographical dimensions

in Table 7 in Appendix to explain these results. The two most polluting sectors, agri-

culture and industry, are heavily concentrated in rural areas. While 3.1% and 21.2% of

rural households are employed in these sectors, only 0.1% and 8.7% of Parisian house-

holds work in them. In contrast, 4.9% and 7.4% of high-income households work in

agriculture and industry, compared to 2.6% and 5.3% of households in the first income

quintile. Therefore, since both rural and wealthier households are more likely to work

in emission-intensive sectors, they may be more affected by the introduction of a carbon

tax on energy consumed by firms.
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Figure 3: Spatial distribution of fossil fuel share and emissions per workers

Sources: Panel a: BdF 2017 and 2021 households fiscal declarations. Panel b: CITEPA, national

accounts and 2021 DADS.

In conclusion, geography plays a more significant role than income in explaining both

households’ energy consumption and firms’ emissions intensity. As a result, house-

holds in rural areas will be affected by the introduction of a carbon tax

in two ways: first, through their higher fossil fuel consumption, and second, because

they work in firms that are more emission-intensive. The role of income is less straight-

forward; while energy consumption is a necessary good, wealthier households tend to

work in more polluting sectors. Therefore, to fully understand the distributive effects

of carbon taxes, we need to develop a model that incorporates these geographic and

sectoral differences.

2 A spatial heterogeneous-agent model

We combine heterogeneous households à la Aiyagari (1994), with idiosyncratic pro-

ductivity shocks leading to income and wealth heterogeneity, and spatial models, with

segmented labor and housing markets, different subsistence energy levels by living areas,

and endogenous migration choice. Our productive sector is composed of a regional final

good producer in each living area, which uses capital, labor, electricity and imported

fossil fuel as intermediate inputs. Another national representative firm produces elec-

tricity using capital and imported fuel. Finally, the fiscal authority has a complete set
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of instruments: a progressive labor income tax Γ(·), a flat capital income tax τ k, a VAT

tax τVAT and carbon taxes on households τh or firms τ f . Carbon tax revenue is used

either to increase public spending or to implement targeted transfers. Our algorithms,

developed from scratch in MATLAB and constituting an independent contribution, are

precisely detailed in Appendix B.

2.1 Households

The economy is populated by an infinite amount of households indexed by i that are

heterogeneous in two dimensions. The “vertical” heterogeneity is related to the id-

iosyncratic productivity process z, creating a distribution for wealth and income. The

“horizontal” heterogeneity is related to the living area, with several household types k

ranking households from “rural” to “urban”, depending on the size of the city they live

in. The living area determines the minimum subsistence energy consumption level ē(k),

the energy mix parameter γh(k), housing price pH(k), wage w(k), and the mean and

variance of the idiosyncratic productivity shock, so that the individual productivity is

denoted zi(k). Households may choose to change city type but they incur a fixed mon-

etary migration cost: κ(k, k′) ≥ 0. As in Ferriere et al. (2023), we assume a preference

shock that follows a Gumbel distribution with variance ϱ.

Households maximize intertemporal utility, choosing consumption c, housing con-

sumption H, asset a′, energy bundle eh (composed of electricity Nh and fossil fuel F h

with the carbon tax τh), subject to their budget constraint, their idiosyncratic produc-

tivity process and a borrowing constraint. Households supply an exogenous level of

labor l̄. Each household i of type k solves the following problem11 (omitting subscript

i for clarity):

max
{at+1,kt+1,ct,eht ,F

h
t ,Nh

t }
+∞
t=0

E0

∞∑
t=0

βt

{
u1−θ
t − 1

1− θ

}
subject to:

Λ
1
σ
C

(
ct
uϵC
t

)σ−1
σ

+ Λ
1
σ
E

(
eht − ē(kt)

uϵE
t

)σ−1
σ

+ Λ
1
σ
H

(
Ht

uϵH
t

)σ−1
σ

= 1 (1)

eh =

[
(1− γh(kt))

1
ϵh (Nh)

ϵh−1

ϵh + γh(kt)
1
ϵh (F h)

ϵh−1

ϵh

] ϵh
ϵh−1

(2)

11Denoting a the assets, z the idiosyncratic productivity, the Bellman equation is defined as

V (a, k, z) = maxu,a′,k′

{
u1−θ−1
1−θ + βE [V (a′, k′, z′)|k, z]

}
, such that Equations (1) to (5) hold.
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(1 + τVAT)
[
ct + pNt N

h
t + (pFt + τht )F

h
t

]
+ pH(kt)Ht︸ ︷︷ ︸

Total consumption expenditures

+ at+1 − at︸ ︷︷ ︸
Savings

+ κ(kt, kt+1)︸ ︷︷ ︸
Migration cost

= Γ
(
zt(kt)w(kt)l̄

)︸ ︷︷ ︸
Net labor income

+ (1− τ k)rtat︸ ︷︷ ︸
Net capital income

+ Tt(kt)︸ ︷︷ ︸
Transfers

(3)

zt(kt) = ext(kt) , xt(kt) = (1− ρz)µz(kt) + ρzxt−1(kt−1) + ϵt, ϵt ∼ N (0, σz(kt)) (4)

at ≥ a (5)

Equation 1 implicitly defines utility following Comin, Lashkari and Mestieri (2021),

which is appealing for two reasons. First, it introduces a non-homotheticity for the

energy consumption that does not vanish with income: energy represents a higher share

of total consumption expenditure for poor households, and stays a non-homothetic good

even for high income. Second, this utility function allows for imperfect substitution

between energy and other goods, with a constant elasticity of substitution σ. Here,

ΛC , ΛH and ΛE control the share of expenditures devoted to c, H and eh, and ϵC , ϵH

and ϵE control the income elasticity of demand for each good. On top of this utility

function, we introduce a minimum subsistence level in energy ē(k) that differs across

living areas, accounting for higher energy needs in rural areas compared to urban areas

(lack of public transportation, less efficient transportation system, bigger houses...).

Equation 2 describes the energy bundle of the household. The elasticity of sub-

stitution between fossil fuel and electricity is determined by the parameter ϵh, and the

energy mix depends on the living area with the parameter γh(k).

Equation 3 defines the budget constraint of households, subject to four taxes.

Good and energy consumptions are subject to a VAT tax at a rate τVAT. Fossil fuel

with relative price pFt is subject to an excise carbon tax τht . Labor income is taxed

according to a progressive tax rule Γ(·) defined later. Capital income is subject to a flat

tax at rate τ k. Finally, households receive lump-sum transfers from the fiscal authority,

that may be contingent to their disposable income level or their living area.

Equation 4 is the idiosyncratic productivity process. Productivity follows an AR(1)

process with normally distributed shocks. We allow the mean µz and the variance σz

to depend on the type k, which allows us to match the cross-distribution across income

and living areas.

Finally, Equation 5 depicts the borrowing constraint leading to imperfect capital

markets. Households cannot borrow more than −a, so that some agents will be con-

strained and “hand-to-mouths”, creating households with high marginal propensity to

consume at the bottom of the wealth distribution.
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2.2 Production: goods, energy and housing

2.2.1 Regional Goods & Services sector

The consumption good (Y ) is produced competitively in each living area k using labor

LY , capital KY and energy bundle eY (composed of electricity NY and fossil fuel F Y

with the carbon tax τ f ). We assume that goods in each region are perfect substitutes,

so that Y =
∑

k Yk. Good producer in region k solves the following program:

max
{LY

k ,KY
k ,eYk ,FY

k ,NY
k ,Yk}

ΠY = Yk − rKKY
k − w(k)LY

k − (pF + τ f )F Y
k − pNNY

k

such that

Yk =

[
(1− ωy(k))

1
σy
(
(KY

k )
α(LY

k )
1−α
)σy−1

σy + ωy(k)
1
σy (eYk )

σy−1

σy

] σy
σy−1

eYk =

[
(1− γy)

1
ϵy (NY

k )
ϵy−1

ϵy + γ
1
ϵy
y (F Y

k )
ϵy−1

ϵy

] ϵy
ϵy−1

ωy(k) is city-specific to match the fact that carbon-intensive industries are often lo-

cated in rural areas, compared to less intensive service firms in urban areas. All other

parameters (δ, α, σy, γy, ϵy) are similar across cities. Since labor supply is not uniformly

distributed, wages w(k) are region-specific. Hassler, Krusell and Olovsson (2021) points

toward a very low short-run substitutability between energy and other inputs once the

technology factors have been chosen. Moreover, Casey (2024) shows that Cobb-Douglas

production functions with energy inputs vastly overestimate transitional emissions ad-

justments. Both papers motivate our choice for a CES production function, with σy

being the elasticity of substitution between energy and non-energy inputs. Moreover,

we assume constant return to scale since Lafrogne-Joussier, Martin and Mejean (2023)

finds a full pass-through of positive energy price shocks using French firm microdata.

Finally, the energy used by the firm is a bundle of electricity and fossil fuel, with an

elasticity of subtitution governed by the parameter ϵy.

2.2.2 National electricity sector

Electricity N (for Nuclear) in our model is a consumption good for households (Nh) and

an intermediary input for firms (Ny). We assume electricity is produced competitively

using capital kN and fossil fuel FN , according to the following program:

max
{KN ,FN ,N}

ΠN = pNN − rKKN − (pF + τ f )FN

such that

N = (KN)ζ(FN)1−ζ
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2.2.3 Imported fossil fuel sector and the rest of the world

Fossil fuel is imported from the rest of the world, at a price pF that reacts to the

demand:

pF = p̄F δF

The rest of the world uses this revenue to import goods X from the domestic economic.

The budget constraint of the rest of the world is then:

X = pFF

This assumption is a reduced-form representation of the rest of the world, while still

allowing fossil fuel prices to adjust following a decline in domestic demand.

2.2.4 Regional housing supply sector

Each city-type k has a housing supply HS(k) that may react to the regional housing

price:

HS(k) = Hk

(
pH(k)

)δH
where Hk is a constant and δH is the price elasticity of housing supply.

2.3 Fiscal authority

The fiscal authority gets revenue from taxes on labor income, capital income, consump-

tion and carbon taxation (i.e. fossil fuel consumption). It uses its revenue to fund

lump-sum transfers (T ), public spending (G) and public debt repayment (rtd̄). De-

noting µt(a, z, k) the measure of households with state (a, z, k), we have households

total aggregation xt =
∫
x dµt(a, z, k) for x ∈ {a, c, F h, Nh}, and firms aggregation

F y
t =

∑
k F

y
k,t. The government has the following budget constraint:

Tt +Gt + rtd̄ =

∫
[zi,twtli,t − Γ(zi,twtli,t)] dµt + τ krtat + τVAT

(
ct + pNt N

h
t + pFt F

h
t

)
+ τht (1 + τVAT)F h

t + τ ft (F
y
t + FN

t )︸ ︷︷ ︸
Carbon tax revenue (CTR)

Following Heathcote, Storesletten and Violante (2017), we assume a progressive labor

tax of the form:

Γ(zwl) = λ(zwl)1−τ

16



Apart for the carbon tax revenue, the budget constraint clears with G. However, the

carbon tax revenue can be separately allocated either to finance an increase in public

spending, or to fund lump-sum transfers towards households, possibly contingent on

income and location. We explore these different scenarios in Section 5.

2.4 Market clearing conditions and equilibrium

We denote µk̄
t = µt(a, z, k = k̄) the regional aggregation of households of type k. The

firm aggregation is x =
∑

k x(k) for x ∈ {KY , HS, y, IY , F Y , NY }. Finally, to close the

model, we have the following market clearing conditions:

at = KY
t +KN

t +HS
t + d̄ (Asset)

∀k,
∫
zl dµk

t = LY
k (Labor)

∀k,
∫
H dµk

t = HS
t (k) (Housing)

Yt = ct + INt + IYt +Gt +Xt (Goods and services)

Ft = FN
t + F Y + F h

t (Fossil fuel)

Nt = NY +Nh (Electricity)

Households’ savings are invested in capital, housing and public debt. Capital depre-

ciates at rate δ, and we assume a mutual fund redistributes the revenue from capital,

debt and housing assets to the households, so that the equilibrium condition is true:

rtat = (rKt − δ)Kt +
∑

k p
H
k,tH

k
t + rtdt. The goods and services (G&S) production (y)

is consumed by households (c), government (G) or foreigners (X), or invested by firms

(IN , IYk ). Electricity N is consumed as intermediate inputs by firms (Ny), or as a

commodity good by households (Nh).

We define the equilibrium as paths for households decisions {ct, eht , Ht, N
h
t , F

h
t , at+1, kt+1}t,

G&S firm decisions {Yk,t, L
Y
k,t, K

Y
k,t, F

Y
k,t, N

Y
k,t}k,t, electricity firm decision {Nt, K

N
t , FN

t }t,
relative prices {rt, wk,t, p

N
t }k,t, fiscal policies {Γ(·), τ k, τVAT, τht , τ

f
t }t, public expenditures

{Tt, Gt}t, and aggregate quantities, such that, for every period t, (i) households and

firms maximize their objective functions taking as given equilibrium prices and taxes,

(ii) the government budget constraint holds, and (iii) all markets clear.

3 Calibration on French macro and micro data

As this paper assesses the distributive effects of carbon taxation, the main point of

the calibration is to reproduce the energy mix used by households and firms in France,

along the geography and income dimension. As shown in Section 1, households in rural
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areas consume more energy and fossil fuel than households in large cities, and work

in more emission-intensive firms. We carefully calibrate the joint geography-income

distribution, the migration patterns between regions, and the main aggregates. As

explained in Appendix B, our calibration strategy is to directly integrate parameters as

guesses of the model, so that each aggregate target is precisely matched. In this section,

we describe how we choose the target for each parameter. Untargeted moments – income

composition, taxes, wealth and MPCs distributions – are presented in Appendix C.

3.1 Households

Consumption heterogeneity: we use ΛE and ΛH to match the average energy and

housing share in total expenditures, and we normalize ΛC to 1 as in Comin, Lashkari and

Mestieri (2021). The parameters ϵE and ϵH are calibrated to fit the non-homotheticity of

energy and housing across income distribution, and ϵC is normalized to 1. We normalize

ē(Paris) = 0 and set the other ē(k) to match the average energy share in each city type,

and γ(k) to have the right energy mix in each area, as shown in Figure 4.a.

Figure 4: Energy share in total consumption

Notes: share of fossil fuel [(pF + τh)Fh] and electricity [pNNh] in total consumption expenditures

[c+(pF + τh)Fh+ pNNh]. Panel a: by geographical location. Panel b: by disposable income quintile,

untargeted.

Source: BdF 2017 Insee survey.

We estimate the elasticity of substitution between energy and G&S consumption to σ =

0.2, using National Accounts longitudinal data from 1959 to 2021 (the data and method

are described in Appendix C). Finally, we set the elasticity of substitution between fossil
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fuel and electricity to ϵh = 1.5. Literature estimates range from 0.02 in the short-run in

Hassler, Krusell and Olovsson (2021) to 2 in the long-run for Papageorgiou, Saam and

Schulte (2017): we choose this value to be the same as the one selected for firms (ϵy),

estimated in Fried, Novan and Peterman (2024). In Appendix F, we provide robustness

check for alternative values of ϵh and ϵy.

Income process: as changes in transfer, labor and capital incomes account for

a large part of the distributive effects of carbon taxation, we calibrate carefully the

distribution of each type of income. We fit the disposable income distribution12 (Figure

5.a), using the AR(1) persistence parameter ρz that we set equal for all types. We use

the means µz(k) and variances σz(k) of the idiosyncratic productivity process for each

type to match the proportion of each geographical location type within each disposable

income quintile (Figure 5.b). Our model recovers that Parisian households are richer

than average, as they account for 26% of the top income quintile but only 19% of the

population. Households living in rural areas or small cities are more equally distributed,

with over-representation in Q2, Q3 and Q4, and under-representation in Q1 and Q5.

12From the 2021 Insee survey “Revenus et patrimoine des ménages” (RPM 2021).
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Figure 5: Distribution of households and migration matrix

Notes: Panel a: quintile of disposable income. Panel b: share of each geographical location type

within each quintile in data (solid lines) and in the model (dashed lines). Panel c and d : probability

of migrate from k towards k′, with {1, 2, 3, 4, 5} = {Rural, Small, Medium, Large, Paris}.
Sources: Panel a: RPM 2021 Insee survey. Panel b: BdF 2017 Insee survey. Panel d. Constructed

using panel data from DADS 2016-2021.

Migration and other parameters: we compute the migration matrix between

each region over 5 years13, i.e. the probability of being in region k′ at time t+ 5 when

the household is in region k at time t. We create a 5 × 5 migration cost matrix κ to

match this migration matrix, and show our results in Figure 5. We recover the fact

that 85% of households on average stay where they are (diagonal of the matrix), that

the movers tend to relocate to a close city type (the values around the diagonal), and

that Paris constitutes the principal pole of attraction, with a very small probability of

leaving. It is not possible to recover perfectly the matrix, because the current migration

matrix in the data is not stationary and then does not lead to the current population

densities. Finally, we set the annual discount factor β = 0.94 to match the French

13To compute this migration matrix, we use the panel data DADS 2016-2021. We keep only workers

between 30 and 55 years old, with annual wage above e2,100, and present in the dataset between 2016

and 2021. This represents 1,010,559 individuals.
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capital-to-income ratio14 when excluding public debt: a
GDP

= 4.5. Like in Kaplan, Moll

and Violante (2018), we set the intertemporal elasticity of substitution (IES) 1/θ to 1.

3.2 Firms

Goods and services firm: the energy share ωy(k) is city-specific and accounts for

the share of each regional firm in total emissions, as illustrated in Figure 2. We follow

Fried (2018) and set the elasticities of substitution between energy and the capital-

labor bundle, and between electricity and fossil fuel, to respectively σy = 0.05 and

ϵy = 1.5. These elasticities lies within the range of estimates from Papageorgiou, Saam

and Schulte (2017): we provide robustness check for alternative values in Appendix F.

The capital share is set to α = 0.31 to match the share of labor revenue wl
GDP

= 65%

following Cette, Koehl and Philippon (2019). The share of fossil fuel in the policy mix

is set to γy = 0.86 such that electricity accounts for 33% of the regional firms’ energy

mix. Finally, the depreciation rate is set to δ = 11.8% to match the aggregate share of

investment as in Auray et al. (2022).

Electricity firm and other parameters: the electricity sector is capital inten-

sive, so we set ζ = 0.9813 to have FN

F
= 1%. We assume that electricity is produced

using few fossil fuel inputs because France relies mainly on nuclear power plants and

hydroelectricity from dams. The initial price pF of the imported fossil fuel is set such

that fossil fuel imports account for 4% of the GDP. The housing supply scaling parame-

ters {Hk=1,2,3,4} are set to obtain the population share of each region in France: 23.5%,

26.0%, 18.5%, 13.4%, and 18.6% for Rural, Small, Medium, Large, and Paris. The last

parameter H5 is set to obtain the share of housing in total wealth H/A = 0.66. The

price elasticity of housing supply is set to δH = 0.2, in the range of common values

found in the housing model literature (for example 0.1 for Murphy (2018) and 0.3 for

Baum-Snow and Han (2024)). Finally, in our main quantitative exercise, we suppose

the price of fossil fuel is fixed and does not react to the domestic demand (δF = 0):

this small-open economy assumption is relaxed in Appendix F.

3.3 Fiscal authority

We set lump-sum transfers to T = 0.08 to match the share of transfer in each disposable

income quintile, as shown in Figure 11.a. We set the labor tax progressivity to τ = 0.08

following Ferriere et al. (2023). The level of the tax λ is set such that public spending

Ḡ makes 29.3% of GDP. We set the effective VAT rate τVAT to 22.24% and the effective

capital income tax rate to 9.02% following Auray et al. (2022) estimates. The resulting

14See 2022 Banque de France report.
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amount of tax paid by each households is shown in Figure 11.b. The fit with data is

good, as we mostly miss corporate taxes in the model.

4 Quantitative results

In Section 1, we show that geography is an important determinant of energy consump-

tion for households and firms. In Section 2 and 3, we build a spatial heterogenous-agent

model, calibrated on France. In this Section, we increase carbon taxes τh or τ f and

compute welfare change, taking into account transitional dynamics.

Experiment. The experiment is the following. We start at the initial steady state as

described in Section 3. At t = 1, we introduce an unexpected shock to the path of τh

or τ f . After t = 1, the path is perfectly anticipated by agents. The shock is permanent,

with the final tax calibrated to reduce emissions by 10% at the final steady state. The

increase in tax is linear: the tax rises from 0 to τfinal in 10 periods, and stays at τfinal

for t ≥ 10. The carbon tax revenue, in this benchmark experiment, is used to increase

public spending; we consider alternative rebating policies in Section 5.

Welfare measure. The welfare is measured as the wealth equivalent along the tran-

sition. It answers the question: “in percentage of my income, how much money should

I receive at the steady state to be indifferent between staying at the steady state, or

going to the transition?”. Formally, we compute, for each initial wealth a0, region k0

and productivity z0, the x(a0, k0, z0) in the following equality:

∞∑
t=0

βtE0[U
no tax
i,t |a0 + x, k0, z0] =

∞∑
t=0

βtE0[U
tax
i,t |a0, k0, z0]

with U = u1−θ

1−θ
. Finally, we express the wealth equivalent by dividing x by total income:

WE(a0, k0, z0) = x(a0, k0, z0)/TI(a0, k0, z0).
15

In this section, we describe the transmission of τh and τ f on household welfare,

categorized by income quintile and location. We also examine the role of migration in

shaping the distributive effects of carbon taxes, and highlight that the associated costs

may differ between the short run and the long run.

4.1 The distributive effects of carbon taxes

The carbon tax burden varies significantly depending on location, income, and the type

of tax. Figure 6 presents the average welfare effects (in wealth equivalent, as described

above) by region and income quintile, for τh (left panel) and τ f (right panel).

15With TI(a, k, z) = Γ
(
z(k)w(k)l̄

)
+ (1− τk)ra+ T (k).
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Before examining the different channels, we provide some general observations.

First, there is a welfare cost associated with reducing emissions by 10%, as wealth equiv-

alents are negative. This cost is higher for τh (−25% on average) than for τ f (−11%).

This implies that the social planner would need to compensate each individual with

9,500e in Europe (or 15, 000$ in the US) to make households accept the increase in τh

(assuming an inefficient rebating policy and no welfare cost from emissions; these points

will be discussed in Section 5). Second, both taxes are regressive, as the welfare cost

is higher for poorer households. The regressive effect is significantly more pronounced

for τh. Third, the welfare cost varies substantially by location. Parisian households

tend to experience smaller welfare losses than other regions, regardless of income, while

households in small and medium cities consistently face high losses. We now detail the

distributive effects of both taxes.

Figure 6: Welfare effect by region and income

Carbon tax on households (τh): Taxing households’ fossil fuel consumption directly

affects their consumption baskets without interacting with firms. As shown in the

decomposition in Figure 13, the overall welfare impact of τh depends on two key factors:

the direct effect of the carbon tax and the change in housing prices pH . The direct effect

of τh is more pronounced for households with high fossil fuel consumption, i.e., rural

and low-income households. Although households can substitute energy for goods and

fossil fuels for electricity, the non-homotheticity of energy consumption with respect

to income (ϵE) and geography (ē) generates heterogeneous welfare costs. Specifically,

the welfare cost is −40% in rural areas compared to −17% in Paris, and −38% for

the bottom income quintile (Q1) versus −22% for the top quintile (Q5). However,

this adverse effect on rural households is partially offset by a decline in housing prices.

As some households migrate from small cities to large cities to avoid the carbon tax,

housing price decreases by 6.2% in rural areas and increases by 4.6% in Paris, mitigating
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the geographic disparity. Thus, while the carbon tax disproportionately burdens rural

areas due to differing energy consumption patterns, migration and housing market

adjustments alleviate some of this burden.

Carbon tax on firms (τ f): Taxing firms’ fossil fuel consumption alters their input

mix and impacts households through changes in income and general equilibrium effects.

As illustrated in Figure 13, the welfare impact of τ f depends on adjustments in wages,

housing prices, and the interest rate. Since firms in rural areas are more fossil fuel-

intensive, the rise in fossil fuel prices reduces the demand for other inputs, particularly

labor, leading to a decrease in wages of 3.9% in rural areas compared to 1.1% in Paris.

This results in welfare costs of −17% and −5%, respectively. The decline in wages

disproportionately affects lower-income households, as labor income constitutes a larger

share of their total income. Similar to τh, this geographic burden is partially offset by

changes in housing prices: as households migrate from rural areas to urban areas for

better wages, pH decreases in rural areas, generating a welfare gain for households

that remain. Lastly, the reduction in firms’ capital demand lowers the interest rate,

disproportionately affecting wealthier households, as capital income represents a larger

share of their income.

In conclusion, due to differences in households’ energy consumption baskets for τh

and firms’ fossil fuel intensity for τ f , both carbon taxes disproportionately impact rural

areas and lower-income households. Migration and housing price adjustments partially

mitigate the welfare costs along the geographic dimension. In the following section, we

further examine the role of migration and the welfare costs over different time horizons.

4.2 Migration and welfare

In our spatial model, households can migrate subject to a migration cost κ, which tends

to smooth welfare costs between regions over time. In this section, we examine the role

of migration in shaping the distributive effects of carbon taxes.

Counterfactual without migration. In Figure 7, we conduct the same experiments

as above but restrict households from migrating (formally, we set κ = ∞). The blue

bars represent the results of our benchmark with migration, while the black dashed

line reflects the scenario without migration. We observe that, although migration does

not significantly affect welfare costs across the income dimension, it substantially re-

duces disparities along the geographical dimension. Without migration, rural areas

face welfare costs of −42% for τh and −19% for τ f , compared to −30% and −12% with

migration. The opposite effect is observed in large cities: they attract households from

rural areas seeking to avoid the carbon tax, which pushes housing prices up, and real

wages down. Therefore, welfare costs in Paris are significantly higher with migration

24



than without.

Figure 7: Welfare effect with and without migration, and at different horizons

These results highlight the critical role of migration in shaping the distributive

effects of carbon taxes. In Figure 15 in Appendix, we depict the changes in population

between steady states across income and geographic dimensions. For τh, significant

composition effects occur within each region. Poor households move away from rural

areas and small cities, leading to lower housing prices that attract wealthier households.

The opposite trend is observed in large cities: in the new steady state, total income

rises by 2.4% in rural areas and 1.1% in small cities but decreases by 3% in large cities.

The composition effect is reversed for τ f . As wages decline in small cities, high-

productivity workers migrate from small to large cities. This leads to a decrease in

housing prices in small cities, which attracts poorer households. In the new steady

state, average total income has decreased by 5.5% and 2.8% in rural areas and small

cities, respectively, compared to the initial steady state, while it has increased by 1.6%

and 4.2% in medium and large cities.

Short-run and long-run welfare effects. Migration influences the distributive effects

of carbon taxes along the geographic dimension, but migration requires time, as house-

holds must accumulate savings to pay migration costs or wait for a positive productivity
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shock. Consequently, the welfare effects may differ between the short run and the long

run. To quantify this phenomenon, we truncate the infinite discounted sum of expected

utility to a finite period and compute the welfare effect for this finite horizon. Formally,

for any T , we solve the following equation:

T∑
t=0

βtE0[U
no tax
i,t |a0 + x, k0, z0] =

T∑
t=0

βtE0[U
tax
i,t |a0, k0, z0]

and scale the x obtained by total income, as explained above. Furthermore, to facilitate

comparisons, we scale the “horizon-h wealth equivalent” to have the same mean as

the “infinite-horizon WE,” since the welfare cost increases with time. This metric

answers the question: “As a percentage of my income, how much money would I need

to compensate for the costs of the first h periods of the transition?”.

The red and yellow lines in Figure 7 represent the WE for T = 5 and T = 20,

while the blue bars correspond to T = ∞. As shown, the distributive effects differ

significantly between the short run and the long run. For T = 5, the short-run welfare

costs are much higher for rural households than for urban ones, and much lower for

poor households than for rich ones. In the short run, rural households bear the cost

of carbon taxes but have not yet migrated. As the population recomposition within

regions described above has not yet occurred, the cost of τh and τ f are concentrated in

the middle of the income distribution, as illustrated by the horizon-5 decomposition in

Figure 14 in Appendix. This “U-shape” pattern aligns with panel b of Figure 5, which

shows that rural households are concentrated in the middle of the income distribution,

whereas Parisian households are concentrated at the tails.

In conclusion, we have shown that the cost of the carbon transition for house-

holds heavily depends on income, geography, and the type of taxes. Rural

areas and poor households tend to experience higher losses compared to urban and

wealthy households. Migration plays a significant role in shaping and smooth-

ing these losses across the geographic dimension. Finally, the population recompo-

sition within regions occurs gradually, implying that geographic disparities are more

pronounced in the short run than in the long run.

5 Optimal transfer policies

The distributive effects of carbon taxation are key for its political acceptability. Our

positive analysis in Section 4 showed that poor and rural households are more affected

by carbon taxes, making them more likely to oppose them or protest, as illustrated by

the Yellow Vest movement in France. In this section, we address the normative question
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of the optimal use of carbon tax revenue through targeted lump-sum transfers. Our

fiscal system offers multiple ways to recycle the revenue, such as lowering existing taxes

or investing in measures to mitigate incompressible energy consumption. However, we

argue that transfers are essential for communication and political acceptability. By

explicitly separating carbon tax revenue from the state budget, transfers make clear

that the tax aims to influence behavior rather than finance public deficits.

We consider four scenarios, each targeting a 10% reduction in emissions between

the initial and final steady states. We assume both taxes are equal, i.e. τh = τ f

(in Appendix E, we also consider scenarios with τh ̸= τ f ). The transfer rule in each

scenario is the following:16

T (yi, k) = CTR ·



0 Scenario 1: Benchmark G

1 Scenario 2: Uniform

µ · y−x
i Scenario 3: Income

µ · y−xk
i Scenario 4: Income×Geography

where T is the transfer, yi the total household’s income, CTR the carbon tax revenue,

and µ the scaling parameter.17

In the “Benchmark G” scenario, the carbon tax revenue is used to increase public

spending G, with transfers set to zero. In the “Uniform” scenario, all households

receive the same transfer. In the “Income” scenario, we find the optimal value18 of

x to maximize welfare, as defined in Section 4. This scenario assumes the government

knows household income and can implement a progressive transfer (if x > 0) but cannot

differentiate based on location k (or is legally restricted from doing so, as in France).

Finally, in the “Income×Geography” scenario, we optimize over five different xk,

allowing the government to apply region-specific progressivity levels.

In Table 2, we show the median welfare for each scenario, by location and by income.

We choose the median welfare as we are interested in the political acceptability of carbon

taxes. In Appendix E, we show that we obtain the same qualitative results for average

welfare, or using Negishi weights, or with alternative rebate formulas.

16We also computed results for the additive rule T (y, k) = (xk + y−x) · CTR · µ, but found that it

yields a lower welfare than scenario 4. Moreover, in Appendix E, we consider an alternative rule to

account for progressivity.
17Total income: y = Γ(zwl) + (1 − τk)ra + T̄ . Carbon tax revenue: CTR = τh(1 + τVAT)Fh +

τf (F y + FN ). Scaling parameter: µ = 1/
∫
i
y−xk
i .

18Scenario 3: x = 2.15. Scenario 4: xk = [2.07, 2.08, 2.38, 2.4, 2.27].
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Table 2: Median welfare by location and income

Scenario Rural Small Medium Large Paris All

(1) Benchmark G −17.3 −17.4 −15.4 −15.3 −14.5 −16.1

(2) Uniform 6.4 6.7 7.9 10.3 7.3 7.3

(3) Income 7.5 7.5 10.1 13.3 10.4 9.4

(4) Income×Geography 7.5 7.9 13.4 24.1 11.8 10.1

Q1 Q2 Q3 Q4 Q5 All

(1) Benchmark G −18.2 −19.1 −17.7 −15.3 −12.8 −16.1

(2) Uniform 20.3 12.5 7.21 3.03 0.91 7.3

(3) Income 66.7 26.5 6.2 −2.0 −0.7 9.4

(4) Income×Geography 94.8 31.7 7.5 −1.3 0.1 10.1

Notes: Welfare is computed as wealth equivalent (in % of households expenditures) over the transition.

While a uniform transfer increases median welfare by 7.3%, an optimal progressive

transfer targeting low-income households yields a 29% higher welfare gain (9.4%), at the

expense of high-income groups. However, as illustrated in Figure 8 below and in Table

14 in the Appendix, the “Income” scenario also generates welfare losses for 24.2% of

households, primarily in rural areas and small cities. These are high-income households

who do not receive the progressive transfer but bear the tax burden.

Therefore, we introduce our “Income × Geography” scenario, which allows for

different income progressivity across regions. This rule increases median welfare for all

groups along both the income and geography dimensions and reduces the share of losers

by 10% compared to the income-only scenario. Thus, incorporating geography into

redistribution policies improves median welfare by 7.4% (and average welfare

by 7.6%) relative to the optimal transfer based solely on income.
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Figure 8: Histogram of welfare gains

As shown in Figure 16 in the Appendix, our distributive results are partially driven

by migration and composition effects across income groups and regions. In the “Income”

scenario, many high-income households migrate from rural and small areas to medium

and large cities, while lower-income households move in the opposite direction due to

declining housing prices. This reallocation generates significant migration costs dur-

ing the transition, reducing overall welfare. In contrast, this effect is mitigated in the

“Income × Geography” scenario: since transfers are less progressive in rural and

small areas and more progressive in medium and large cities, households have fewer

incentives to migrate, thereby lowering welfare costs.

We show that it is possible to reduce emissions while mitigating the welfare

losses associated with the green transition. By implementing transfers based on income

and location, the share of households experiencing welfare losses can be reduced, thereby

enhancing the political acceptability of carbon taxes.

6 Conclusion

In this paper, we study the distributive effects of carbon taxation with a focus on spa-

tial heterogeneity. Using several administrative datasets, household-level surveys and

matched employer-employee records from France, we document that rural households

consume 2.7 times more fossil fuels than urban households and are employed in firms

that emit 3 times more. These patterns are consistent across other countries. We

incorporate these findings into a spatial-heterogeneous agent model, featuring idiosyn-
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cratic income risks, endogenous consumption, savings, and migration choices, as well

as segmented housing and labor markets, and local energy expenditure shares for both

households and firms. Our approach bridges a gap in the literature by integrating spa-

tial models, which emphasize migration, with heterogeneous-agent models that analyze

inequality and wealth accumulation.

We find that rural households bear a disproportionate burden from carbon taxation.

In our benchmark scenario, their welfare losses are 20% higher than those of Parisian

households, even after accounting for transitional dynamics and migration. Ignoring

spatial heterogeneity in income-based transfer policies reduces overall welfare by 7%, a

result that holds across different welfare criteria and recycling schemes. These findings

highlight a key policy implication: geographical location must be explicitly accounted

for when designing carbon tax frameworks, particularly as the EU-ETS2 for household

heating and transport becomes operational in 2027.

This work opens several avenues for future research. We focus on optimal transfer

policies, as they play a central role in addressing distributional concerns and enhancing

political feasibility. However, future studies could explore alternative uses of carbon tax

revenues within our framework, such as reducing distortionary taxes or financing clean

technologies. Additionally, our findings indicate that different forms of carbon taxa-

tion generate distinct migration responses, highlighting the need for further empirical

research. Finally, incorporating both inequality and migration dynamics into macroe-

conomic models may be essential for designing an optimal fiscal-monetary policy mix

during the energy transition.
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Auray, Stéphane et al. (2022). “Markups, Taxes, and Rising Inequality”. In: CREST

Working Paper (cit. on pp. 21, 46).
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A Descriptive Evidence

A.1 City types

Our categorization of city types is as follows:

• Rural areas: Fewer than 2,000 inhabitants.

• Small cities: Between 2,000 and 20,000 inhabitants.

• Medium cities: Between 20,000 and 50,000 inhabitants.

• Large cities: More than 50,000 inhabitants.

• Paris: The Parisian agglomeration, including the departments 75, 92, 93, and 94.

We favor this categorization because the population is uniformly distributed across

these locations, according to the latest 2021 French Census. We check that we recover a

similar distribution in our administrative datasets used in the following sections (DADS

and household-level fiscal data). Figure 9 provides a map of France illustrating these

categories, using 2024 Insee geographical code.

Figure 9: Spatial distribution of city types, France

Notes: We have 34,998 observations with a Insee geographical code.

Sources: Population data downloaded from https://www.data.gouv.fr/ using 2024 Insee geograph-

ical code and 2021 French Census data.
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A.2 Households: energy consumption patterns

Energy share and geography: Table 3 shows the energy, fossil and electricity shares

(in % of total consumption expenditures), by living area and income quintile. We

decompose energy use by two categories: housing (and we show the share of population

living in a house and the size of living spaces in squared meters) and transports (with

the share of car owners, the average number of vehicles per households, and the share

of households using a car to commute).

Table 3: Descriptive statistics: households consumption

Variable Rural Small Medium Large Paris Q1 Q2 Q3 Q4 Q5

energy share 12.1 10.6 10.0 7.9 5.7 10.0 10.2 9.8 8.9 7.5

fossil fuel share 8.1 6.7 6.3 4.9 3.0 5.8 6.4 6.4 5.7 4.6

electricity share 4.0 3.9 3.7 3.0 2.7 4.2 3.8 3.4 3.2 2.9

energy for housing 6.3 5.8 5.4 4.3 3.6 6.0 5.8 5.2 4.7 4.1

% living in a house 94.4 80.2 67.7 41.2 22.2 43.7 54.4 62.3 63.4 63.9

size of living space (in m2) 105.6 94.8 81.4 73.2 64.0 72.5 78.2 85.0 92.2 108.6

energy for transports 5.8 4.8 4.6 3.6 2.1 4.0 4.4 4.7 4.2 3.4

% car owners 93.3 89.9 85.9 77.9 59.6 63.0 76.6 86.2 88.9 88.8

# of vehicles per hhs 1.6 1.5 1.3 1.1 0.8 0.8 1.1 1.3 1.5 1.5

% using cars (commute) 47.5 47.5 44.6 42.0 25.0 23.5 36.8 45.8 51.8 49.3

Sources: size of living space coming from Fideli 2017: over 26 millions observations. All over variables

are from BdF 2017: 16,739 households, weighted using survey weights.

Energy share and age: Table 4 shows the variable described above, by age groups.

We find that age also correlates with energy consumption, mostly because of housing

expenditures. This is why we add it as a control in our regressions. Yet, it appears

that the fossil fuel share is roughly flat across age groups.
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Table 4: Descriptive statistics: age groups, BdF 2017

Variable <30 30-39 40-49 50-59 60-69 >70

energy share 7.3 8.1 8.4 9.4 9.9 10.3

fossil fuel share 4.5 5.2 5.4 6.1 6.1 5.9

electricity share 2.8 2.9 3.0 3.4 3.8 4.4

energy for housing 3.4 3.8 4.3 4.9 5.7 7.3

% living in houses 23.4 50.6 59.0 64.2 67.9 65.2

energy for transports 3.9 4.2 4.1 4.5 4.2 3.0

% of car owners 68.5 82.1 86.2 86.8 84.7 72.1

# of vehicles per hhs 1.0 1.3 1.4 1.5 1.3 0.9

% using cars (commute) 51.5 63.6 65.3 59.8 15.6 1.7

Notes. 16,739 households, weighted using survey weights.

Spatial distribution of fossil fuels consumption: Leveraging the complete set

of fiscal declarations from French households in 2021, we estimate the spatial distribu-

tion of fossil fuel consumption. The methodology involves the following steps:

1. Using the 2017 BdF survey, we regress the fossil fuel share on variables that are

also available in the fiscal declarations: disposable income, age of the household

reference person, household size, and city type. To mitigate the influence of

outliers, we limit the analysis to households with a fossil fuel share below 50% (5

standard deviations above the mean).

2. Based on this regression model, we estimate the fossil fuel share for each household

in the fiscal declarations dataset. We retain households with an annual income

above 2, 100e and for which a city type can be assigned. This yields 36,582,417

household-level observations.

3. Finally, we calculate the average fossil fuel share for each Insee geographical code

(34,987 areas) and present the spatial distribution in Figure 3.

Households and size of living spaces: We use the Fideli 2017 database to

assess the size of living spaces depending on income and spatial characteristics. Fi-

deli or Fichier Démographique d’Origine Fiscale sur les Logements et les Individus is a

structured administrative data that relates tax administration records on housing prop-

erty and declared earnings through fiscal identifiers for households and dwellings. The

dataset provides demographic details, household structures, income levels, social ben-

efits received, and contextual geographic information, covering both mainland France

and all overseas departments.
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Table 5: Households’ size of living space, in m2

Variable Rural Small Medium Large Paris

Q1 93.4 78.8 68.1 61.6 53.1

Q2 96.3 82.9 71.2 64.4 56.0

Q3 102.0 90.6 77.6 69.6 57.4

Q4 110.0 99.8 85.7 77.4 60.5

Q5 130.3 120.7 106.3 98.6 77.9

Sources: Fideli 2017: over 26 millions observations.

Energy shares in other countries: Table 1 provides the energy share by living

area and income quintile for some countries, using Eurostat 2020 Household Budget

Surveys (HBS) that harmonizes micro-data for European countries. The data is from

2020, except for the UK, which is from 2015. Italy does not have quintile distribution

data. “Towns” includes both towns and suburbs.

We use the Consumer Expenditure Survey (CES) 2023 for the US. We use the latest

tables publicly available. For the US, the category > 1M covers cities with populations

over 1 million.

In both datasets, we can recover average energy shares by income quintiles and by

city sizes. Energy consumption is decomposed between housing and transport costs.

Note that in the HBS dataset, we cannot distinguish fossil fuels from other transport

costs such as repairs or parking fees. We find that rural areas consistently exhibit higher

energy shares compared to towns and cities across all countries.

A.3 Firms: emission patterns

Data on sectoral emissions. To recover sectoral emissions, we aggregate 3 different

datasets in order to cover all emissions in France. First, we take Bach et al. (2024). They

compute emission intensity, in kgCO2eq per euro of value added, for all manufacturing

subsectors (NAF code 05 to 33) in France. Second, for the ‘Waste’ subsector (NAF code

36-9), we use data from the CITEPA that gives total emissions of the sector in tCO2eq.

Third, for the remaining subsectors that are part of ‘Agriculture’, ‘Other industrial

activities’, ‘Energy’, ‘Transports’ and ‘Services’, we use total emissions computed by

government officials in national accounts and in the 2025 Budget Bill19. We report

part of the data in Table 6. Finally, we build a tCO2eq/Worker metric using annual

19Since 2020, the French Government publishes a green budget report, listing all expenditure having

a favourable or unfavourable impact on the environment. Within this report, they also estimate

total emissions per economic sectors. We focus on the year 2025 because earlier estimates excluded

non-energy emissions.

38



value added and employment levels from 2022 Insee National Accounts. We find very

heterogeneous results across sectors. ‘Coke Production & Refining’ and ‘Metallurgy’

are the most intensive in emissions with 1, 422 and 872 tCO2eq annual emissions per

worker. In the services sector, firms emit on average 1.8 tCO2eq per worker each year.

Table 6: Emission intensity per sectors, Bach et al. (2024), CITEPA, national accounts

NAF Code EmissionsA VAB EmploymentC C02/WorkerD

Agriculture* 01-3 1.7 46.8 314.2 250.6

Other Extractive Industries 05-9 0.7 1.7 14.3 88.9

Food Industries 10 0.4 37.3 644.6 23.8

Beverage Manufacturing 11 0.1 6.1 34.1 10.7

Textile Manufacturing 13 0.2 1.9 40.8 9.3

Clothing Industry 14 0.1 1.6 46.1 1.7

Leather & Footwear Industry 15 0.0 2.9 31.5 1.6

Woodworking & Basketry Manuf. 16 0.2 5.3 62.9 16.5

Paper & Paperboard Industry 17 0.8 5.8 58.0 75.6

Printing, Repro. of Recorded Media 18 0.1 2.8 52.8 5.8

Coke Production & Refining 19 1.9 4.9 6.4 1421.9

Chemical Industry 20 1.3 19.6 124.6 196.6

Pharmaceutical Industry 21 0.0 13.4 47.9 12.0

Rubber & Plastic Product Manuf. 22 0.1 18.4 121.5 16.8

Non-metallic Min. Product Manuf. 23 2.2 9.0 99.1 199.2

Metallurgy 24 5.2 10.4 62.4 872.1

Metal Product & Machinery 25 0.1 22.3 287.9 8.0

Computers, Electronics & Optical 26 0.0 11.5 87.0 3.4

Electrical Equipment Manuf. 27 0.1 7.3 85.7 8.7

Machinery & Equipment Manuf. 28 0.1 13.4 147.3 4.7

Automobile Industry 29 0.1 14.0 105.2 8.0

Other Transport Equipment Manuf. 30 0.0 18.7 103.2 4.7

Furniture Manuf. 31 0.1 2.3 44.4 3.1

Other Manufacturing Industries 32 0.1 5.8 85.5 3.5

Repair & Installation of Machinery 33 0.0 27.9 372.0 1.9

Energy 35 2.6 29.6 411.2 189.6

Waste 36-9 0.9 15.3 153.3 94.0

Other industrial activities* 12, 41-43 0.2 131.5 1604.2.1 17.6

Transport* 49-53 0.3 128.6 1451.0 30.3

Services* – 0.0 1765.8 22102.2 1.8

Notes. For sectors with an *, we use sub-sectoral emission intensity from national accounts. We only

report the sectoral-level value here. A: emissions in kgCOeq/e of VA, 2022. B : Value Added 2022,

eBn. C : Employment, thousands. D : CO2eq per worker, tCOeq/worker.

Administrative data on workers. Déclaration Annuelle de Données So-
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ciales (DADS). The DADS is an annual report that all companies employing salaried

workers in France are required to submit. These reports contain numerous worker- and

firm-level details, including wages, hours worked, job type, qualifications, pay periods,

employment type (full-time/part-time), and both workers’ and firms’ geographical lo-

cations. The DADS dataset covers all non-agricultural employees, including those in

public companies, local governments, and public hospitals. It also includes data on

unemployed individuals receiving benefits.

Merging DADS micro data and sectoral emissions. From the DADS 2021,

we assign to each worker i the average emission intensity from its firm f . The emission

intensity of firm f is computed using sub-sectoral level emission intensity from Table 6

and firm’s share in total employment. In each group (city or quintile), we then compute

the average emission intensity αi i.e.
1

length(q)

∑
i∈q αi. Those results are presented in

Figure 2. For our extensive margin, we define emission-intensive sectors as those whose

share in total emissions is above their share in total value added, i.e. all industrial

sectors, ‘Agriculture’, ‘Energy’ and ‘Transport’ sectors. We additionally report the

share of workers in those sectors in Table 7.

Table 7: Share of workers (%) in each sectors, by geography and income quintile

Sector NAF Code Rural Small Medium Large Paris Q1 Q2 Q3 Q4 Q5

Agriculture 01-3 3.1 1.6 0.9 0.6 0.1 2.6 1.8 1.3 0.8 0.4

Industry – 21.2 17.9 14.4 11.1 8.7 8.0 10.9 17.0 21.3 20.6

Coke and Refining 19 0.03 0.03 0.03 0.02 0.01 0.00 0.00 0.01 0.01 0.12

Chemical Industry 20 0.61 0.55 0.47 0.30 0.40 0.12 0.17 0.30 0.55 1.28

Non-metallic Manuf. 23 0.60 0.40 0.25 0.13 0.08 0.09 0.15 0.37 0.50 0.52

Metallurgy 24 0.42 0.32 0.24 0.13 0.02 0.04 0.09 0.22 0.43 0.49

Energy 35 0.8 0.5 0.5 0.5 0.6 0.1 0.1 0.1 0.6 1.8

Transport 49-53 5.2 5.0 5.0 4.1 4.4 2.7 3.5 5.7 7.4 4.7

Services – 69.7 75.1 79.3 83.8 86.3 86.5 83.6 75.8 70.0 72.5

Sum – 100 100 100 100 100 100 100 100 100 100

Notes. We use the 2021 cross-section of the DADS. We remove negative income values and we merge

individuals present more than once in the dataset, ending up with 3,528,153 observations.

Spatial distribution of sectoral emissions. Using the DADS 2021 dataset, we

can visualize emissions per worker by geographical location at a very granular level.

In Figure 3, we present a map showing the average emissions per worker at the local

scale. We have 3,295,317 worker-level observations, which are aggregated into 34,607

geographical units.
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A.4 Regression

OLS Regression. Table 3 displays average energy shares for income quintile and

location, but there is a correlation between these dimensions. This is why we regress

our variables of interest using the following OLS regression:

yi = α +
5∑

q=1

βqIQi=q +
5∑

k=1

γkICi=k + µ ∗ Controlsi + ϵi (6)

with yi either individual consumption share or the emissions intensity of the worker, Qi

income quintile groups and Ci city-size groups (as defined in Section 1.1). We control

by age and household’s size when regressing for consumption patterns. Results of our

regression are presented in Table 8 below. We use the regression coefficients to build

average energy consumption shares in Figure 1 and average emissions per worker in

Figure 2.
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Table 8: Regressions

yi: consumption share yi: emissions per worker

BdF 2017 DADS 2021

(1) (2) (3) (4)

Energy share Fossil fuel share Electricity share

Intercept 12.00∗∗∗ 6.77∗∗∗ 5.23∗∗∗ 20.31∗∗∗

(0.32) (0.29) (0.16) (0.10)

Q2 −0.72∗∗∗ 0.15 −0.88∗∗∗ −0.99∗∗∗

(0.20) (0.18) (0.10) (0.10)

Q3 −1.05∗∗∗ 0.21 −1.27∗∗∗ 0.79∗∗∗

(0.20) (0.18) (0.10) (0.10)

Q4 −1.65∗∗∗ −0.04 −1.61∗∗∗ 4.45∗∗∗

(0.20) (0.18) (0.10) (0.10)

Q5 −2.28∗∗∗ −0.51∗∗ −1.77∗∗∗ 8.98∗∗∗

(0.20) (0.18) (0.10) (0.10)

Small −1.89∗∗∗ −1.79∗∗∗ −0.10 −6.59∗∗∗

(0.22) (0.20) (0.11) (0.09)

Medium −2.50∗∗∗ −2.01∗∗∗ −0.49∗∗∗ −9.12∗∗∗

(0.22) (0.20) (0.11) (0.10)

Large −4.97∗∗∗ −3.68∗∗∗ −1.28∗∗∗ −13.2∗∗∗

(0.17) (0.15) (0.08) (0.11)

Paris −7.11∗∗∗ −5.54∗∗∗ −1.56∗∗∗ −15.8∗∗∗

(0.21) (0.19) (0.11) (0.10)

Age 0.06∗∗∗ 0.03∗∗∗ 0.02∗∗∗ –

Household size −0.11∗ 0.16∗∗∗ −0.27∗∗∗ –

Observations 16,739 16,739 16,739 3,528,153

Notes. This table report results of Equation (6). In columns (1) to (3), we use survey weights.

Columns (2) and (3) are used in Figure 1. Column (4) is used in Figure 2. In both datasets, we only

keep observations with strictly positive income: disposable income in BdF 2017, wage in DADS 2021.
∗: p < 0.05, ∗∗: p < 0.01, ∗∗∗: p < 0.001
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B Algorithm

The main challenges of this paper are the heterogeneous-agent structure, the discrete

location choice and the high number of guesses. In this section, we detail the algorithms

used at the steady state, for the calibration and during the transition. Each steady state

takes 5 seconds to compute on a personal computer, and 27 seconds for a non-linear

transition between two distinct steady states. The entire code has been written from

scratch on Matlab.

Heterogeneous-agent structure. Our state-space for asset, income and geogra-

phy is S = A× Z×K. We discretize A over an exponential grid of 100 points between

0 and 40, Z over 5 points using Tauchen (1986) method, and K = {1, 2, 3, 4, 5}, which
gives us 2,500 grid points. We solve the household decision using value function itera-

tion (VFI). The key variable of choice for the household is the implicit utility u(a, k, z):

given u, k′ and the first-order conditions, the households can choose its consumption

c, eh, Nh, F h, H, and the budget constraint gives the saving choice a′ as a residual. To

solve the VFI, the follow these steps:

1. for each choice k′ ∈ K, use a golden-section algorithm to find the implicit utility

uk′(a, k, z) such that a′ = 0, to obtain a lower bound for the maximization of the

utility.

2. guess the expected value function f(a, k, z) = E[V (a, z, k)].

3. for each choice k′ ∈ K, use a golden-section algorithm to find the implicit utility

uk′(a, k, z) that maximizes the value function Uk′(a, k, z) + βf(a′, k′, z′).

4. using Gumbel trick described below, find the new value function V (a, k, z).

5. using spline interpolation over V (a, k, z), compute the new guess for the value

function f(a, k, z).

6. use the Howard’s improvement: for 30 iterations, iterate the f guess without

optimizing, taking fnew(a, k, z) = uk′(a, k, z) + βf(a, k, z).

7. compare the new value function fnew with the guess f(a, k, z): if the Euclidian

norm of the difference is above 10−8, replace f by fnew and go back to step 3.

Once we have the decision rule, we compute the transition matrix M between (a, k, z)

and (a′, k′, z′). If d(a, k, z) is our column measure of density over the state space, we

compute d′ = Md. This means that the row i of d is associated with the column i of

M . Therefore, for each i of the state space, we fill the column i of M with 2 ∗ 5 ∗ 5

values that are the products of:

• a: for the household’s decision a′(a, k, z), we put a′ on our grid A, by computing

weights ω− and ω+ depending on the distance between a′ and the inferior (a−)
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and superior (a+) points of the grid, and we put the values ω− and ω+ at every

rows a− and a+ of the state space.

• z: using the Tauchen weights, we put the probability P (z → z′) at every rows z′.

• k: using the migration probability P(k → k′) computed during the Gumbel trick

(see below), we put these probabilities for every rows k′.

Note that we use a sparse matrix M , as each column contains only 50 values over 2,500

lines. Finally, we compute d′ = Md until every row of |d′ − d| is lower than 10−8, i.e.

when we obtain the stationary density given the decision matrix M .

Discrete location choice. We follow Ferriere et al. (2023) for the implementation

of discrete choice with preference shocks drawn from an extreme-value distribution. De-

note V k′
t (a, z, k) the value function for the household at the grid point (a, z, k) choosing

the future location k′. Let ϵk′ the preference shock for each location k′, and assume the

vector −→ϵ = {ϵ1, ϵ2, ϵ3, ϵ4, ϵ5}. Then the complete value function is the expectation of

all k′-value function, taken over −→ϵ :

Vt(a, z, k) = E−→ϵ

[
max

k

{
V k′

t (a, z, k)
}]

= ϱ ln

(∑
k′∈K

exp

(
V k′
t (a, z, k)

ϱ

))
where the last equality derives from assuming that ϵk′ follows a Gumbel distribution

with variance ϱ – see Ferriere et al. (2023), Couture et al. (2024) or Kleinman, Liu and

Redding (2023). The probability of choosing location k′ is given by:

Pk′

t (a, z, k) =
exp

(
V k′
t (a,z,k)

ϱ

)
∑

k′∈K exp
(

V k′
t (a,z,k)

ϱ

) = exp

(
V k′
t (a, z, k)− Vt(a, z, k)

ϱ

)

High number of guesses. We need ng = 13 guesses to solve our model, at the

steady state and during the transition: interest rate R (asset market), total electricityN

(electricity market), housing prices {pH1 , pH2 , pH3 , pH4 , pH5 } (segmented housing markets),

local outputs {Y1, Y2, Y3, Y4, Y5} (segmented labor markets), and carbon tax revenue

CTR (government budget constraint). For the calibration procedure, we use more

than 30 guesses, as we add parameters as guesses and calibration targets as clearing

conditions.

To find the equilibrium values for our guesses at the steady state, we use a quasi-

Newton algorithm, improved with the Broyden method. Denote x the column vector

of our guess variables, and f the function that associates the vector of guesses to the

column vector of errors e in each clearing conditions, so that f(x) = e. f is the central

function, that computes the optimality conditions for firms, governments, households

and the measure. We use the following steps:
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1. guess an initial vector x0, and compute the error e0 = f(x0).

2. for each guess i, create the vector xi
0 with xi

0(i) = x0(i) + ϵ (with ϵ = 10−4) and

xi
0(̄i) = x0(̄i), and compute the error ei0 = f(xi

0).

3. create the Jacobian matrix M of size n2
g that relates a change of each guess to a

change in each clearing condition. The column i is the vector ei0 − e0.

4. iterate the guess using xnew = x + α, with α = −M−1 ∗ e ∗ d, with d a damp-

ening factor (usually equal to 1, can be lower if the initial guess is far for the

equilibrium). Denote elast = e the error.

5. compute enew = f(xnew).

6. modify the Jacobian matrix using the Broyden algorithm: (M−1)new = M−1 +
(α−θ)(α′M−1)

α′θ
, with θ = M−1(e − elast). If the code does not converge, it is also

possible to recompute, every t iterations, the “true” Jacobian of step 3.

7. if max |e| > 10−5, go back to step 4.

For the non-linear transition, we use the same method of guessing a path for our

variables and iterating it using a quasi-Newton algorithm. First, we compute the initial

and final steady state, as we consider a permanent increase in carbon tax.

Second, we compute the Jacobian of our system around the final steady state. This

means that we compute the effect of a shock at any time period tschock of the transition

(100− 1 in our experiment), of any variable i (13), on any clearing condition j (13), at

any time tclearing (99), leading to a matrix J = 1287 × 1287. To compute this object

efficiently, we use parallel computation (as any variable can be shocked independently),

sparse vectors, and the fake-news algorithm developed by Auclert et al. (2021). While

formally dependent on the final steady state considered, the matrix J can be used to

compute transitions towards other steady states (possibly with a dampening factor), as

it only provides a new guess for the non-linear transition, and not the real path.

Third, we use the following algorithm to compute the non-linear transition:

1. guess an initial path X of size ng × (T − 1) for our guess variables.

2. starting from period T−1, compute the optimal backward decision for households,

and the firms’ and government optimality conditions.

3. create the transition matrix as explained above for each period, and iterate for-

ward from 1 to T − 1 to obtain the measure and the aggregate variables.

4. compute the path of errors E of size ng×(T−1) for the market clearing condition.

5. iterate the guess path using Xnew = X− J−1E.

6. if max |E| > 10−3, go back to step 2.
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C Calibration

Table 9: Table of parameters

Parameter Description Value Notes and targets

Households

β Discount factor 0.94 a
GDP = 4.5

θ Intertemporal ES 1 Kaplan, Moll and Violante (2018)

σ ES between c and eh 0.2 Estimated in Appendix C

ΛE Energy share 0.095 Energy share in consumption = 9.5%

ΛH Housing rents share 1.464 Housing spending share in consumption = 17%

ϵE Non-homotheticity parameter 0.9 Energy expenditures across income quintiles

ϵH Non-homotheticity parameter 0.25 Housing expenditures across income quintiles

ΛC , ϵC Utility parameters 1 Comin, Lashkari and Mestieri (2021)

γh(k) Fossil share [0.83, 0.81, 0.81, 0.80, 0.73] Fossil fuel share in consumption in each k

ϵh ES between Fh and Nh 1.5 Authors choice

Hs
k Housing supply [0.43, 0.46, 0.29, 0.20, 0.32] Population in each city type

ē(k) Energy incompressible use 0.01 ∗ [1.82, 1.43, 1.30, 0.59, 0] Energy share across types

ρG Gumbel shock variance 0.1 Income heterogeneity, aggregate

ρz Persistence z 0.97 Income heterogeneity, aggregate

µz(k) Mean z [-0.09,-0.07,0.09,0.14,0.04] Average income for each type

σz(k) Variance z [0.29,0.29,0.28,0.27,0.40] Heterogeneity within each type

a Borrowing constraint 0 Authors’ choice

Firms

pF Price of fossil fuel 0.6773 Share of fossil fuel imports = 4%

ωy(k) Energy share [0.09, 0.07, 0.05, 0.04, 0.02] Share of each regional firm in total emissions

σy ES between ey and (K, l) 0.05 Fried (2018)

α Capital share 0.3089 wl
GDP from Cette, Koehl and Philippon (2019)

γy Share of fossil in Y mix 0.86 Firms’ share in total emissions = 62.5%

ϵy ES between F y and Ny 1.5 Fried (2018)

Government

T̄ Transfers 0.08 Share of T in income

τ Labor tax progressivity 0.08 From Ferriere et al. (2023)

λ Labor tax level 0.571 Ḡ
GDP = 0.29 as in Auray et al. (2022)

τk Corporate income tax rate 9.02% Effective rate in Auray et al. (2022)

τVAT VAT tax rate 22.34% Effective rate in Auray et al. (2022)
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C.1 Data on income

For Figure 4, we use Enquête Budget des Familles 2017. For Figure 5.a, we use the

average disposable income by decile from Revenus et patrimoine des ménages, Édition

2021. For Figure 5.b, we use fiscal data in 2021 total income as reproduced below:

Table 10: Geographical composition of each revenue decile (%)

Q1 Q2 Q3 Q4 Q5 Mean

Rural 17.7 24.7 25.6 26.8 20.4 23.5

Small cities 21.0 25.9 27.0 28.7 25.5 26.0

Medium cities 22.3 19.8 18.7 17.6 16.8 18.5

Large cities 20.8 14.9 13.05 11.3 12.2 13.4

Paris 18.2 14.7 15.6 15.7 25.0 18.5

Sum 100 100 100 100 100 100

For Figure 11, we use the Revenus et patrimoine des ménages, Édition 2021, that

we reproduce below:

Table 11: Revenues and taxes by income decile (thousand euros)

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10

Primary income 10.5 15.9 21.0 25.9 31.3 36.4 42.2 49.5 60.4 133.1

Net labor income 4.8 9.5 13.5 17.5 21.7 25.7 30.0 35.4 42.0 69.2

Net financial income 1.8 2.1 2.8 3.2 3.7 4.4 5.4 6.6 9.6 52.3

Sum of taxes -4.8 -5.6 -6.7 -7.9 -9.2 -10.5 -12.1 -14.5 -18.5 -46.3

Taxes on products and production -4.2 -4.7 -5.1 -5.6 -6.3 -6.7 -7.3 -8.0 -9.4 -12.7

Taxes on income and wealth -0.6 -1.0 -1.6 -2.3 -3.0 -3.7 -4.9 -6.5 -9.0 -33.6

C.2 Household energy consumption: estimation of σ

In Figure 10, we use French longitudinal aggregate data taken from Insee 2022 national

accounts, and show that the share of energy in total consumption comoves with the

relative price of energy. This would not happen if energy and goods consumption were

perfect substitutes, as explained in Hassler, Krusell and Olovsson (2021).
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Figure 10: Consumption ratio ( e
h

c
) and relative price of energy (ph)

With Comin, Lashkari and Mestieri (2021) preferences, the elasticity of substitution

between goods of different sectors is constant, i.e.

∂ ln(c/eh)

∂ ln(ph)
= σ

Thus, we estimate σ through a simple OLS estimation:

∆ ln(eht )−∆ ln(ct) = −σ∆ ln(pht ) + ϵt

We get σ̂ = 0.2, significant at the 5% level. From the graph, we can isolate two periods.

It seems that before 1990, the consumption ratio comoved more with ph than after.

Restricting our estimation to the 1959-1990 period, we get σ̂ = 0.28 significant at the

5% level. Taking only the 1990-2021 period we get σ̂ = 0.08 not significantly different

from zero. Adding an intercept to the regression always yields a zero for the constant

term. As Hassler, Krusell and Olovsson (2021) that use U.S. data, we find low short-

run elasticity between energy and non-energy inputs in French data. In our benchmark

calibration, we decide to set σ = 0.2, which is in the range of Casey (2024) pointing

out that Cobb-Douglas functions vastly over-estimate transitional energy adjustments,

and Golosov et al. (2014) that use such a framework.

C.3 Other untargeted moments

In this section, we present untargeted moments of our model. In Figure 11, we show

the income composition across income quintile, and total taxes paid by households.
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Figure 11: Income composition and taxes by income quintile

Notes: Panel a: composition of income data and model fit. Panel b: taxes paid by households in the

model and data (excluding social contribution).

Source : Revenus et patrimoine des ménages, Édition 2021.

Our model does not match the upper tail of the wealth distribution but performs

well in matching the distribution of wealth across the first wealth quintiles (Q1 to Q4).

Our MPC distribution falls within the lower bounds of Boehm, Fize and Jaravel (2025)

using bank data in France.

Figure 12: Wealth inequalities and MPC heterogeneity

Notes: Panel a: net mean wealth by net wealth quintile. Panel b: instantaneous MPC (total expen-

diture) by quartile of disposable income.

Sources: Panel a: Insee Revenus et patrimoine des ménages, 2021. Panel b: Boehm, Fize and Jaravel

(2025).
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D Additional results – Section 4

In Figure 13, we decompose the welfare effect of τh and τ f into the 5 variables that

affect directly households’ budget constraint: wages (w), household carbon tax (τh),

electricity price (pN), interest rate (R) and housing prices (pH). To obtain this de-

composition, we start from the transition path, and we shut one variable at a time by

setting its value to the steady state level. The effect we attribute to each variable is

the difference between the total effect (with all variables moving along the transition)

and the partial transition (with all variables moving, except one).

Figure 13: Decomposition of the welfare effect
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Figure 14 is the same decomposition, but considering only the welfare changes during

the first 5 periods of the transition.

Figure 14: Decomposition of the welfare effect at horizon t = 5
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Figure 15 shows, for each Region × Income quintile, the change in population be-

tween the two steady states. The sum of each line is equal to 0, as the share of

households in each disposable income quintile is always 20%; the sum of each column

can be different from 0, as households migrate between regions.

Figure 15: Density change by income and region between steady states

Notes: Panel a: only increase τh with a 10% decrease in total emissions. Panel b: only increase τf

with a 10% decrease in total emissions. Disposable income quintiles are built at the national level.

Lecture: After the increase in τh, the share of households in rural areas that are in the 1st quintile

decreases by 0.52% compared to the initial steady state.

For τh, poor households migrate from rural areas to large cities and Paris, due to

the direct effect of carbon tax. For τ f , it is the opposite; rich households migrate to

large cities due to the decrease in wage, and poor households move to rural areas due

to the decrease in housing price.
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E Additional results – Section 5

E.1 τh vs τ f

In Table 12, we show the optimal values of τh and τ f required to reduce emissions by

10%. In the benchmark complete model, taxing households is costly in terms of welfare

and inefficient at reducing emissions due to the incompressible energy consumption

ē. Therefore, the optimal tax is significantly higher for firms than for households. If

we remove the geographic dimension from our model by setting ēk, γk, ωk, and zk to

their average values across all regions, the optimal τh increases while τ f decreases, as

households become less constrained. Finally, eliminating non-homothetic preferences

by assuming ϵE = ϵH = 1 further equalizes the two carbon taxes. Since energy is a

necessary good, taxing household energy disproportionately affects poorer households,

which have the highest marginal utility. Removing non-homotheticity smooths the

carbon tax burden across income groups, thereby reducing the welfare cost associated

with τh.

Table 12: Optimal taxes to reduce emission by 10%

Model Description τh τf Ratio

(1) Benchmark model 0.045 1.076 0.042

(2) No geography 0.132 0.743 0.178

(3) Homothetic preferences 0.334 0.476 0.702

E.2 Recycling policies: additional results

While Table 2 in main test shows the median welfare for each group and each scenario,

Table 13 below is the average welfare, computed as the average wealth equivalent (in

% of households expenditures) over the transition.
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Table 13: Average welfare by location and income

Scenario Rural Small Medium Large Paris All

(1) Benchmark model: G −17.4 −17.3 −16.1 −15.9 −14.7 −16.5

(2) Uniform transfers 9.1 9.3 8.9 10.0 9.6 9.3

(3) Income rule 39.5 34.9 18.7 17.9 17.2 27.7

(4) Geo X Income 32.1 29.7 31.9 32.7 22.8 29.8

Q1 Q2 Q3 Q4 Q5 All

(1) Benchmark model: G −18.6 −18.8 −17.1 −15.3 −12.5 −16.5

(2) Uniform transfers 21.9 13.0 7.3 3.5 1.2 9.3

(3) Income rule 98.9 32.3 6.9 −0.3 0.9 27.7

(4) Geo X Income 104.4 35.3 8.0 0.5 1.4 29.8

Notes: Welfare is computed as wealth equivalent (in % of households expenditures) over the transition.

In Table 14, we show the share of losers by location and by income group, i.e. the

percentage of households within each group that suffer welfare losses after the policy.

Table 14: Share of losers by location and income

Model Rural Small Medium Large Paris All

(1) Benchmark model: G 100 100 100 100 100 100

(2) Uniform transfers 0 0 0 0 0 0

(3) Income rule 29.0 27.2 29.3 26.9 6.1 24.2

(4) Geo X Income 28.2 25.8 25.6 19.9 5.6 21.9

Q1 Q2 Q3 Q4 Q5 All

(1) Benchmark model: G 100 100 100 100 100 100

(2) Uniform transfers 0 0 0 0 0 0

(3) Income rule 0 0 6.3 49.6 10.1 24.2

(4) Geo X Income 0 0 0 49.6 9.5 21.9

E.3 Migration & Transfers

In Figure 16, we show the density change between steady states, for each transfer rule.

The “Income” transfer scenario implies large migrations, as poor households are less

constrained and can afford to live in rural areas even with high energy requirements.

The “Income × Geography” scenario implies less migrations, as rich households in rural

areas receive a transfer and therefore are not forced to migrate.
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Figure 16: Migration dynamics

Notes: Panel a: increase in public spending. Panel b: uniform transfers. Panel c: optimal income

rebating rule. Panel d : optimal income × geography rebating rule. Lecture: After the scenario

“Benchmark G”, the share of households in rural areas that are in the 1st quintile increases by 0.09%

compared to the initial steady state.

E.4 Alternative Pareto Weight

In the main text, we compute the optimal transfer rule by maximizing the welfare using

uniform weights. This means we maximize

W =

∫ 1

0

αi

∞∑
t=0

βtE0[Ui,t]di

with αi = 1. In the following Table 15, we use Negishi weights to neutralize the

redistribution motive:

αi =

[
∂V (a, z, k)

∂a

]−1

The optimal coefficient to maximize welfare with Negishi weights is equal to x = 1.68

for the “Income” transfer rule (compared to x = 2.15 for uniform weights), and

xk = [2.0, 2.0, 2.25, 2.3, 2.15] for the “Income × Geography” rule (compared to

xk = [2.07, 2.08, 2.38, 2.4, 2.27] for uniform weights). Therefore, Negishi weights imply
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a lower progressivity for the transfer rule, as it neutralizes the redistribution motive.

However, as carbon tax is regressive, we still obtain that the optimal transfer is pro-

gressive. The average welfare with Negishi-optimal transfer rules are shown in Table

15:

Table 15: Average welfare by location and income, Negishi weights

Scenario Rural Small Medium Large Paris All

(1) Income 33.7 31.0 19.9 20.3 18.8 26.0

(2) Income×Geography 32.8 29.7 29.6 32.3 21.8 29.4

Q1 Q2 Q3 Q4 Q5 All

(1) Income 87.3 31.8 8.9 1.3 1.2 26.0

(2) Income×Geography 102.0 34.9 8.2 0.6 1.4 29.4

Notes: Welfare is computed as wealth equivalent (in % of households expenditures) over the transition.

E.5 Alternative transfer rule

Our transfer rule from Section 5 is a simple inverse function. In this section, we compute

the same results with an alternative formula taken from Ferriere et al. (2023):

T (y, ȳ) = mȳ
2 exp

(
−ξ
(

y
ȳ

))
1 + exp

(
−ξ
(

y
ȳ

)) (7)

with y total disposable income and ȳ mean total disposable income. This transfer

function is governed by two parameters: a level m and a phase-out ξ. The parameter ξ

determines how quickly transfers phase out with total income. Optimizing our model

with this new transfer rule, we get: m = 0.19 and ξ = 6.39. Figure 17 compares our

optimal inverse-rule formula with the transfer rule 7. The rule 17 is more progressive

than the main inverse rule, since it fades away faster to 0 when income increases.

This additional progressivity allows to reach higher aggregate welfare (around +3% in

all scenarios) – see our results of aggregate welfare by income and city-type groups

in Table 16. With this transfer rule, we again find that allowing for spatial specific

progressivity parameters ξk
20 enhances aggregate welfare by +8.3%.

20Optimizing other this new set of parameters we get: ξk = [7.69, 7.69, 6.24, 6.08, 6.76] andmk = 0.19
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Figure 17: Inverse formula vs. formula 7

Table 16: Average welfare by location and income, alternative transfer rule

Scenario Rural Small Medium Large Paris All

(1) Income 38.6 36.2 24.2 23.6 21.8 30.3

(2) Income×Geography 34.7 32.3 34.3 36.6 24.8 32.5

Q1 Q2 Q3 Q4 Q5 All

(2) Income 109.4 36.5 6.7 −1.3 0.8 30.3

(2) Income×Geography 117.7 38.4 6.5 −1.1 1.3 32.5

Notes: Welfare is computed as wealth equivalent (in % of households expenditures) over the transition.
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F Robustness

F.1 Elasticities of substitution

Benchmark values for our main elasticities are: σ = 0.2, ϵh = 1.5, σy = 0.05, ϵy = 1.5,

δH = 0.2. In this section, we run the same scenario as our “Benchmark G” for the

following alternative values: σ = 0.4, ϵh = 1.3, σy = 0.2, ϵy = 1.3, δH = 0.3. For

each specification, we find the new initial steady state with carbon taxes equal to 0,

then the new final steady state with −10% decrease in total emissions. We finally

compute the transitional dynamics between the two steady states, to compute average

welfare effects (defined as wealth equivalent in percentage of households expenditures)

by location and income groups. We present our results in Table 17, where the last

column is our inequality ratio, defined as the percentage change between the first and

the fifth column (for example, the 18.3% at the first line means that Rural households

suffer a welfare loss 18.3% higher than Parisian households).

Table 17: Average welfare by location and income, different elasticities

Scenario Rural Small Medium Large Paris All Rural/Paris

(1) Benchmark model: G −17.4 −17.3 −16.1 −15.9 −14.7 −16.5 18.3

(2) σ = 0.4 −8.8 −8.9 −8.5 −8.2 −8.1 −8.5 8.6

(3) ϵh = 1.3 −20.9 −20.8 −19.1 −18.9 −17.6 −19.7 18.8

(4) σy = 0.2 −15.8 −15.8 −14.7 −14.5 −13.4 −15.0 17.9

(5) ϵy = 1.3 −19.7 −19.6 −18.1 −17.9 −16.6 −18.6 18.7

(6) δH = 0.3 −17.6 −17.5 −16.2 −16.0 −14.5 −16.6 21.4

Q1 Q2 Q3 Q4 Q5 All Q1/Q5

(1) Benchmark model: G −18.7 −18.8 −17.1 −15.2 −12.5 −16.5 49.6

(2) σ = 0.4 −9.1 −9.5 −8.8 −8.1 −7.3 −8.5 24.7

(3) ϵh = 1.3 −22.0 −22.5 −20.5 −18.4 −15.1 −19.7 45.7

(4) σy = 0.2 −16.9 −17.1 −15.6 −13.9 −11.5 −15.0 47.0

(5) ϵy = 1.3 −20.8 −21.2 −19.3 −17.3 −14.3 −18.6 45.4

(6) δH = 0.3 −19.0 −19.0 −17.2 −15.3 −12.5 −16.6 52.0

Notes: Welfare is computed as wealth equivalent (in % of households expenditures) over the transition.

Last column: inequality ratio, defined as the percentage change between the first and the fifth column.

Elasticity of substitution between G&S consumption and energy (σ = 0.4). Increas-

ing σ substantially reduces welfare losses across all groups. For example, rural welfare

losses decline to −8.8% and the Q1 group’s losses drop to −9.1%. This is because

households adapt more easily to higher fossil fuel prices. Note that this also dampens

both geographic and income-based inequalities in welfare impacts: the rural-to-Paris
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welfare gap decreases from 18.3% in the benchmark to 8.6%, and the Q1-to-Q5 gap

drops from 49.6% to 24.7%.

Elasticity of substitution between fossil fuels and electricity for households (ϵh = 1.3).

Reducing ϵh from 1.5 to 1.3 increases welfare losses across all groups, as it becomes more

difficult to substitute for households. Rural losses rise to −20.9% and Q1 losses increase

−22.0%. The rural-to-Paris welfare gap widens slightly to 18.8%, while the Q1-to-Q5

gap narrows modestly to 45.7%.

Elasticity of substitution between capital-labor and energy for firms (σy = 0.2). With

a higher σy, welfare costs are smaller for rural (−15.8) and poor (−16.9) households.

The rural-to-Paris welfare gap decreases slightly to 17.9%, and the Q1-to-Q5 gap nar-

rows to 47.0%. This indicates that greater substitution flexibility in production not

only lowers overall welfare costs but also marginally reduces income and geographic

disparities.

Elasticity of substitution between fossil fuels and electricity for firms (ϵy = 1.3).

Decreasing ϵy from 1.5 to 1.3 increases welfare losses across all groups, as energy is less

substitutable, creating a higher decline in wages and interest rate. Rural areas face a

loss of −19.7 while Q1 losses increase to −20.8. The rural-to-Paris welfare gap widens

slightly to 18.7% while the Q1-to-Q5 gap narrows modestly to 45.4%.

Elasticity of housing supply (δH = 0.3). Increasing δH does not change aggregate

losses (−16.5 against −16.6) but it amplifies distributive effects. The rural-to-Paris

welfare gap increases significantly to 21.4%, while the Q1-to-Q5 gap widens to 52.0%.

These results suggest that more elastic housing supply amplifies both income and spatial

disparities in welfare costs.

F.2 Partial Equilibrium vs General Equilibrium

Most of the empirical literature on the distributive effects of carbon taxes imputes

emissions to households’ consumption basket, either directly (on direct consumption of

fossil fuels) and indirectly (on imputed carbon content of good and services). In this

section, we run a “partial equilibrium” analysis in our model. We take as given all the

prices and the distribution, and we impute emissions to F h and c, knowing that F h

accounts for 40% of national emissions and therefore c should account for 60%. Finally,

we find the carbon tax τ such that emissions are reduced by 10%, assuming F h and c

are taxed proportionally to their emission intensity. Table 18 shows the median welfare,

computed as wealth equivalent, between our benchmark model (general equilibrium)

and this partial simulation.

59



Table 18: Median welfare by location and income

Scenario Rural Small Medium Large Paris Rural/Paris

(1) General equilibrium −17.4 −17.3 −16.1 −15.9 −14.7 18.3

(2) Partial equilibrium −87.7 −83.2 −68.9 −68.8 −69.6 26.0

Q1 Q2 Q3 Q4 Q5 Q1/Q5

(1) General equilibrium −18.7 −18.8 −17.1 −15.2 −12.5 49.6

(2) Partial equilibrium −78.6 −82.6 −84.7 −74.8 −63.7 23.4

Notes: Welfare is computed as wealth equivalent, in % of households expenditures. Last column:

inequality ratio, defined as the percentage change between the first and the fifth column.

The welfare cost is significantly higher in partial equilibrium because households

must fully bear the tax burden through changes in expenditures, without adjustments

in wages, housing prices, or interest rates. While τh allows households to substitute

towards c and N , and τ f enables firms to substitute toward capital and labor, this

unique τ restricts households’ ability to adjust, forcing a reduction in their overall

consumption basket. In partial equilibrium, households decrease their consumption

of goods (−5.4%) and fossil fuels (−16.9%) while increasing electricity consumption

(+22.3%). Because we assume a fixed population density, migration is not an option,

further amplifying the tax burden. Consequently, partial equilibrium analysis overstates

spatial effects compared to our general equilibrium framework.

On the opposite, partial equilibrium underestimates the income dimension. τh is

regressive because it disproportionately affects households with high fossil fuel consump-

tion, and τ f is regressive through its negative impact on wages. In partial equilibrium,

our τ does not affect wages, and targets consumption c and not only fossil fuel F h,

leading to a more balanced distributional impact across income groups.

F.3 Endogenous fossil fuel price

In this section, we depart from our assumption of a fixed fossil fuel price (δF = 0)

and instead allow the price to respond to changes in domestic fossil fuel demand. We

consider two cases: δF = 0.1 and δF = 0.5. For both cases, we calculate the transition

dynamics using the same carbon tax increase as in our Benchmark G scenario from

Section 5. In these new scenarios, total emissions decrease by 9.6% when δF = 0.1 and

by 8.3% when δF = 0.5. Welfare results, broken down by location and income groups,

are reported in Table 19. These adjustments do not alter our overall quantitative

findings.
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Table 19: Average welfare by location and income, pF endogenous

Scenario Rural Small Medium Large Paris All Rural/Paris

(1) Benchmark model: G −17.4 −17.3 −16.1 −15.9 −14.7 −16.5 18.3

(2) δF = 0.1 −16.7 −16.6 −15.4 −15.2 −14.0 −15.8 19.3

(3) δF = 0.5 −14.3 −14.2 −13.2 −13.1 −12.0 −13.5 19.2

Q1 Q2 Q3 Q4 Q5 All Q1/Q5

(1) Benchmark model: G −18.7 −18.8 −17.1 −15.2 −12.5 −16.5 49.6

(2) δF = 0.1 −17.8 −18.0 −16.4 −14.6 −12.0 −15.8 48.3

(3) δF = 0.5 −15.3 −15.4 −14.0 −12.5 −10.3 −13.5 48.5

Notes: Welfare is computed as wealth equivalent, in % of households expenditures. Last column:

inequality ratio, defined as the percentage change between the first and the fifth column.
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